コード例 #1
0
def main(config, result_dir):
    # print the config
    print_with_title('Configurations', config.format_config(), after='\n')

    # open the result object and prepare for result directories
    results = MLResults(result_dir)
    results.make_dirs('plotting', exist_ok=True)
    results.make_dirs('train_summary', exist_ok=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, config.x_dim),
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    multi_gpu = MultiGPU(disable_prebuild=False)

    # build the model
    grads = []
    losses = []
    test_nlls = []
    test_lbs = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x
                         ] in multi_gpu.data_parallel(batch_size, [input_x]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                with arg_scope([p_net, q_net],
                               is_training=is_training,
                               channels_last=True):
                    _ = q_net(dev_input_x).chain(p_net,
                                                 latent_names=['z'],
                                                 observed={'x': dev_input_x})

            else:
                with arg_scope([p_net, q_net],
                               is_training=is_training,
                               channels_last=multi_gpu.channels_last(dev)):
                    # derive the loss and lower-bound for training
                    train_q_net = q_net(dev_input_x)
                    train_chain = train_q_net.chain(
                        p_net,
                        latent_names=['z'],
                        latent_axis=0,
                        observed={'x': dev_input_x})

                    dev_vae_loss = tf.reduce_mean(
                        train_chain.vi.training.sgvb())
                    dev_loss = dev_vae_loss + regularization_loss()
                    losses.append(dev_loss)

                    # derive the nll and logits output for testing
                    test_q_net = q_net(dev_input_x, n_z=config.test_n_z)
                    test_chain = test_q_net.chain(p_net,
                                                  latent_names=['z'],
                                                  latent_axis=0,
                                                  observed={'x': dev_input_x})
                    dev_test_nll = -tf.reduce_mean(
                        test_chain.vi.evaluation.is_loglikelihood())
                    dev_test_lb = tf.reduce_mean(
                        test_chain.vi.lower_bound.elbo())
                    test_nlls.append(dev_test_nll)
                    test_lbs.append(dev_test_lb)

                    # derive the optimizer
                    params = tf.trainable_variables()
                    grads.append(
                        optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, test_lb, test_nll] = \
        multi_gpu.average([losses, test_lbs, test_nlls], batch_size)
    train_op = multi_gpu.apply_grads(grads=multi_gpu.average_grads(grads),
                                     optimizer=optimizer,
                                     control_inputs=tf.get_collection(
                                         tf.GraphKeys.UPDATE_OPS))

    # derive the plotting function
    work_dev = multi_gpu.work_devices[0]
    with tf.device(work_dev), tf.name_scope('plot_x'):
        plot_p_net = p_net(n_z=100,
                           is_training=is_training,
                           channels_last=multi_gpu.channels_last(work_dev))
        x_plots = tf.reshape(bernoulli_as_pixel(plot_p_net['x']), (-1, 28, 28))

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename='plotting/{}.png'.format(
                                       loop.epoch),
                                   grid_size=(10, 10),
                                   results=results)

    # prepare for training and testing data
    (x_train, y_train), (x_test, y_test) = load_mnist()
    train_flow = bernoulli_flow(x_train,
                                config.batch_size,
                                shuffle=True,
                                skip_incomplete=True)
    test_flow = bernoulli_flow(x_test, config.test_batch_size, sample_now=True)

    with create_session().as_default() as session, \
            train_flow.threaded(5) as train_flow:
        # train the network
        with TrainLoop(params,
                       var_groups=['q_net', 'p_net'],
                       max_epoch=config.max_epoch,
                       max_step=config.max_step,
                       summary_dir=(results.system_path('train_summary')
                                    if config.write_summary else None),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            trainer.anneal_after(learning_rate_var,
                                 epochs=config.lr_anneal_epoch_freq,
                                 steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={
                                      'test_nll': test_nll,
                                      'test_lb': test_lb
                                  },
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.update_metrics(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # print the final metrics and close the results object
    print_with_title('Results', results.format_metrics(), before='\n')
    results.close()
コード例 #2
0
def main():
    # load mnist data
    (x_train, y_train), (x_test, y_test) = \
        load_cifar10(dtype=np.float32, normalize=True)
    print(x_train.shape)

    # input placeholders
    input_x = tf.placeholder(
        dtype=tf.float32, shape=(None,) + x_train.shape[1:], name='input_x')
    input_y = tf.placeholder(
        dtype=tf.int32, shape=[None], name='input_y')
    is_training = tf.placeholder(
        dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    multi_gpu = MultiGPU()

    # build the model
    grads = []
    losses = []
    y_list = []
    acc_list = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x, dev_input_y] in multi_gpu.data_parallel(
            batch_size, [input_x, input_y]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                _ = model(dev_input_x, is_training, channels_last=True)

            else:
                # derive the loss, output and accuracy
                dev_logits = model(
                    dev_input_x,
                    is_training=is_training,
                    channels_last=multi_gpu.channels_last(dev)
                )
                dev_softmax_loss = \
                    softmax_classification_loss(dev_logits, dev_input_y)
                dev_loss = dev_softmax_loss + regularization_loss()
                dev_y = softmax_classification_output(dev_logits)
                dev_acc = classification_accuracy(dev_y, dev_input_y)
                losses.append(dev_loss)
                y_list.append(dev_y)
                acc_list.append(dev_acc)

                # derive the optimizer
                params = tf.trainable_variables()
                grads.append(
                    optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, acc] = multi_gpu.average([losses, acc_list], batch_size)
    [y] = multi_gpu.concat([y_list])
    train_op = multi_gpu.apply_grads(
        grads=multi_gpu.average_grads(grads),
        optimizer=optimizer,
        control_inputs=tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    )

    # prepare for training and testing data
    train_flow = DataFlow.arrays(
        [x_train, y_train], config.batch_size, shuffle=True,
        skip_incomplete=True
    )
    test_flow = DataFlow.arrays([x_test, y_test], config.batch_size)

    with create_session().as_default():
        # train the network
        with TrainLoop(params,
                       max_epoch=config.max_epoch,
                       summary_dir=results.make_dir('train_summary'),
                       summary_graph=tf.get_default_graph(),
                       summary_commit_freqs={'loss': 10, 'acc': 10},
                       early_stopping=False) as loop:
            trainer = Trainer(
                loop, train_op, [input_x, input_y], train_flow,
                feed_dict={learning_rate: learning_rate_var, is_training: True},
                metrics={'loss': loss, 'acc': acc}
            )
            anneal_after(
                trainer, learning_rate_var, epochs=config.lr_anneal_epoch_freq,
                steps=config.lr_anneal_step_freq
            )
            evaluator = Evaluator(
                loop,
                metrics={'test_acc': acc},
                inputs=[input_x, input_y],
                data_flow=test_flow,
                feed_dict={is_training: False},
                time_metric_name='test_time'
            )
            evaluator.after_run.add_hook(
                lambda: results.commit(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=5)
            trainer.log_after_epochs(freq=1)
            trainer.run()

        # save test result
        results.commit_and_print(evaluator.last_metrics_dict)
コード例 #3
0
ファイル: cifar10_conv.py プロジェクト: mengyuan404/tfsnippet
def main():
    # parse the arguments
    arg_parser = ArgumentParser()
    spt.register_config_arguments(config, arg_parser)
    arg_parser.parse_args(sys.argv[1:])

    # print the config
    print_with_title('Configurations', pformat(config.to_dict()), after='\n')

    # open the result object and prepare for result directories
    results = MLResults(config.result_dir)
    results.save_config(config)  # save experiment settings for review
    results.make_dirs('train_summary', exist_ok=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.float32,
                             shape=(None, ) + config.x_shape,
                             name='input_x')
    input_y = tf.placeholder(dtype=tf.int32, shape=[None], name='input_y')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = spt.AnnealingVariable('learning_rate', config.initial_lr,
                                          config.lr_anneal_factor)
    multi_gpu = MultiGPU()

    # build the model
    grads = []
    losses = []
    y_list = []
    acc_list = []
    batch_size = spt.utils.get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x, dev_input_y
                         ] in multi_gpu.data_parallel(batch_size,
                                                      [input_x, input_y]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                _ = model(dev_input_x, is_training, channels_last=True)

            else:
                # derive the loss, output and accuracy
                dev_logits = model(dev_input_x,
                                   is_training=is_training,
                                   channels_last=multi_gpu.channels_last(dev))
                dev_cls_loss = tf.losses.sparse_softmax_cross_entropy(
                    dev_input_y, dev_logits)
                dev_loss = dev_cls_loss + tf.losses.get_regularization_loss()
                dev_y = spt.ops.softmax_classification_output(dev_logits)
                dev_acc = spt.ops.classification_accuracy(dev_y, dev_input_y)
                losses.append(dev_loss)
                y_list.append(dev_y)
                acc_list.append(dev_acc)

                # derive the optimizer
                params = tf.trainable_variables()
                grads.append(
                    optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, acc] = multi_gpu.average([losses, acc_list], batch_size)
    [y] = multi_gpu.concat([y_list])
    train_op = multi_gpu.apply_grads(grads=multi_gpu.average_grads(grads),
                                     optimizer=optimizer,
                                     control_inputs=tf.get_collection(
                                         tf.GraphKeys.UPDATE_OPS))

    # prepare for training and testing data
    (x_train, y_train), (x_test, y_test) = \
        spt.datasets.load_cifar10(x_shape=config.x_shape, normalize_x=True)
    train_flow = spt.DataFlow.arrays([x_train, y_train],
                                     config.batch_size,
                                     shuffle=True,
                                     skip_incomplete=True)
    test_flow = spt.DataFlow.arrays([x_test, y_test], config.test_batch_size)

    with spt.utils.create_session().as_default():
        # train the network
        with spt.TrainLoop(params,
                           max_epoch=config.max_epoch,
                           max_step=config.max_step,
                           summary_dir=(results.system_path('train_summary')
                                        if config.write_summary else None),
                           summary_graph=tf.get_default_graph(),
                           early_stopping=False) as loop:
            trainer = spt.Trainer(loop,
                                  train_op, [input_x, input_y],
                                  train_flow,
                                  feed_dict={is_training: True},
                                  metrics={
                                      'loss': loss,
                                      'acc': acc
                                  })
            trainer.anneal_after(learning_rate,
                                 epochs=config.lr_anneal_epoch_freq,
                                 steps=config.lr_anneal_step_freq)
            evaluator = spt.Evaluator(loop,
                                      metrics={'test_acc': acc},
                                      inputs=[input_x, input_y],
                                      data_flow=test_flow,
                                      feed_dict={is_training: False},
                                      time_metric_name='test_time')
            evaluator.after_run.add_hook(
                lambda: results.update_metrics(evaluator.last_metrics_dict))
            trainer.evaluate_after_epochs(evaluator, freq=5)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # print the final metrics and close the results object
    print_with_title('Results', results.format_metrics(), before='\n')
    results.close()
コード例 #4
0
def main():
    # load mnist data
    (x_train, y_train), (x_test, y_test) = \
        load_mnist(shape=[config.x_dim], dtype=np.float32, normalize=True)

    # input placeholders
    input_x = tf.placeholder(dtype=tf.int32,
                             shape=(None, ) + x_train.shape[1:],
                             name='input_x')
    is_training = tf.placeholder(dtype=tf.bool, shape=(), name='is_training')
    learning_rate = tf.placeholder(shape=(), dtype=tf.float32)
    learning_rate_var = AnnealingDynamicValue(config.initial_lr,
                                              config.lr_anneal_factor)
    multi_gpu = MultiGPU(disable_prebuild=False)

    # build the model
    vae = VAE(
        p_z=Bernoulli(tf.zeros([1, config.z_dim])),
        p_x_given_z=Bernoulli,
        q_z_given_x=Bernoulli,
        h_for_p_x=functools.partial(h_for_p_x, is_training=is_training),
        h_for_q_z=functools.partial(h_for_q_z, is_training=is_training),
    )

    grads = []
    losses = []
    lower_bounds = []
    test_nlls = []
    batch_size = get_batch_size(input_x)
    params = None
    optimizer = tf.train.AdamOptimizer(learning_rate)

    for dev, pre_build, [dev_input_x
                         ] in multi_gpu.data_parallel(batch_size, [input_x]):
        with tf.device(dev), multi_gpu.maybe_name_scope(dev):
            if pre_build:
                with arg_scope([h_for_q_z, h_for_p_x]):
                    _ = vae.chain(dev_input_x)

            else:
                # derive the loss and lower-bound for training
                train_chain = vae.chain(dev_input_x)
                dev_baseline = baseline_net(dev_input_x)
                dev_cost, dev_baseline_cost = \
                    train_chain.vi.training.reinforce(baseline=dev_baseline)
                dev_loss = regularization_loss() + \
                    tf.reduce_mean(dev_cost + dev_baseline_cost)
                dev_lower_bound = \
                    tf.reduce_mean(train_chain.vi.lower_bound.elbo())
                losses.append(dev_loss)
                lower_bounds.append(dev_lower_bound)

                # derive the nll and logits output for testing
                test_chain = vae.chain(dev_input_x, n_z=config.test_n_z)
                dev_test_nll = -tf.reduce_mean(
                    test_chain.vi.evaluation.is_loglikelihood())
                test_nlls.append(dev_test_nll)

                # derive the optimizer
                params = tf.trainable_variables()
                grads.append(
                    optimizer.compute_gradients(dev_loss, var_list=params))

    # merge multi-gpu outputs and operations
    [loss, lower_bound, test_nll] = \
        multi_gpu.average([losses, lower_bounds, test_nlls], batch_size)
    train_op = multi_gpu.apply_grads(grads=multi_gpu.average_grads(grads),
                                     optimizer=optimizer,
                                     control_inputs=tf.get_collection(
                                         tf.GraphKeys.UPDATE_OPS))

    # derive the plotting function
    work_dev = multi_gpu.work_devices[0]
    with tf.device(work_dev), tf.name_scope('plot_x'), \
            arg_scope([h_for_q_z, h_for_p_x],
                      channels_last=multi_gpu.channels_last(work_dev)):
        x_plots = tf.reshape(
            tf.cast(255 *
                    tf.sigmoid(vae.model(n_z=100)['x'].distribution.logits),
                    dtype=tf.uint8), [-1, 28, 28])

    def plot_samples(loop):
        with loop.timeit('plot_time'):
            session = get_default_session_or_error()
            images = session.run(x_plots, feed_dict={is_training: False})
            save_images_collection(images=images,
                                   filename=results.prepare_parent(
                                       'plotting/{}.png'.format(loop.epoch)),
                                   grid_size=(10, 10))

    # prepare for training and testing data
    def input_x_sampler(x):
        sess = get_default_session_or_error()
        return sess.run([sampled_x], feed_dict={sample_input_x: x})

    with tf.device('/device:CPU:0'):
        sample_input_x = tf.placeholder(dtype=tf.float32,
                                        shape=(None, config.x_dim),
                                        name='sample_input_x')
        sampled_x = sample_from_probs(sample_input_x)

    train_flow = DataFlow.arrays([x_train],
                                 config.batch_size,
                                 shuffle=True,
                                 skip_incomplete=True).map(input_x_sampler)
    test_flow = DataFlow.arrays([x_test], config.test_batch_size). \
        map(input_x_sampler)

    with create_session().as_default():
        # fix the testing flow, reducing the testing time
        test_flow = test_flow.to_arrays_flow(batch_size=config.test_batch_size)

        # train the network
        with TrainLoop(params,
                       max_epoch=config.max_epoch,
                       summary_dir=results.make_dir('train_summary'),
                       summary_graph=tf.get_default_graph(),
                       early_stopping=False) as loop:
            trainer = Trainer(loop,
                              train_op, [input_x],
                              train_flow,
                              feed_dict={
                                  learning_rate: learning_rate_var,
                                  is_training: True
                              },
                              metrics={'loss': loss})
            anneal_after(trainer,
                         learning_rate_var,
                         epochs=config.lr_anneal_epoch_freq,
                         steps=config.lr_anneal_step_freq)
            evaluator = Evaluator(loop,
                                  metrics={
                                      'test_nll': test_nll,
                                      'test_lb': lower_bound
                                  },
                                  inputs=[input_x],
                                  data_flow=test_flow,
                                  feed_dict={is_training: False},
                                  time_metric_name='test_time')
            trainer.evaluate_after_epochs(evaluator, freq=10)
            trainer.evaluate_after_epochs(functools.partial(
                plot_samples, loop),
                                          freq=10)
            trainer.log_after_epochs(freq=1)
            trainer.run()

    # write the final test_nll and test_lb
    results.commit(evaluator.last_metrics_dict)