コード例 #1
0
ファイル: wrapper.py プロジェクト: WenweiGu/HUST-GWW-FYP
    def sample(
        self,
        n_samples=None,
        is_reparameterized=None,
        group_ndims=0,
        compute_density=False,
        name=None,
    ):
        from tfsnippet.stochastic import StochasticTensor

        if n_samples is None or n_samples < 2:
            n_samples = 2
        with tf.name_scope(name=name, default_name="sample"):
            samples = self._distribution.sample(n_samples)
            samples = tf.reduce_mean(samples, axis=0)
            t = StochasticTensor(
                distribution=self,
                tensor=samples,
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=self.is_reparameterized,
            )
            if compute_density:
                with tf.name_scope("compute_prob_and_log_prob"):
                    log_p = t.log_prob()
                    t._self_prob = tf.exp(log_p)
            return t
コード例 #2
0
 def test_equality(self):
     distrib = Mock(is_reparameterized=False)
     samples = tf.constant(0.)
     t = StochasticTensor(distrib, samples)
     self.assertEqual(t, t)
     self.assertEqual(hash(t), hash(t))
     self.assertNotEqual(StochasticTensor(distrib, samples), t)
コード例 #3
0
    def sample(self,
               n_samples=None,
               group_ndims=0,
               is_reparameterized=None,
               compute_density=None,
               name=None):
        group_ndims = validate_group_ndims_arg(group_ndims)
        if not compute_density and compute_density is not None:
            raise RuntimeError('`FlowDistribution` requires `compute_prob` '
                               'not to be False.')

        with tf.name_scope(name, default_name='FlowDistribution.sample'):
            # sample from the base distribution
            x = self._distribution.sample(
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
                compute_density=True)

            # now do the transformation
            is_reparameterized = x.is_reparameterized
            y, log_det = self._flow.transform(x)  # y, log |dy/dx|
            if not is_reparameterized:
                y = tf.stop_gradient(y)  # important!

            # compose the transformed tensor
            return StochasticTensor(
                distribution=self,
                tensor=y,
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
                # log p(y) = log p(x) - log |dy/dx|
                log_prob=x.log_prob() - log_det)
コード例 #4
0
    def sample(self,
               n_samples=None,
               is_reparameterized=None,
               group_ndims=0,
               name=None):
        from tfsnippet.stochastic import StochasticTensor

        if is_reparameterized and not self.is_reparameterized:
            raise RuntimeError('Distribution is not re-parameterized')
        elif is_reparameterized is False and self.is_reparameterized:

            @contextlib.contextmanager
            def set_is_reparameterized():
                try:
                    self._distribution._is_reparameterized = False
                    yield False
                finally:
                    self._distribution._is_reparameterized = True
        else:

            @contextlib.contextmanager
            def set_is_reparameterized():
                yield self.is_reparameterized

        with tf.name_scope(name=name, default_name='sample'):
            with set_is_reparameterized() as is_reparameterized:
                samples = self._distribution.sample(n_samples=n_samples)
                return StochasticTensor(
                    distribution=self,
                    tensor=samples,
                    n_samples=n_samples,
                    group_ndims=group_ndims,
                    is_reparameterized=is_reparameterized,
                )
コード例 #5
0
ファイル: discretized.py プロジェクト: shliujing/tfsnippet
    def sample(self,
               n_samples=None,
               group_ndims=0,
               is_reparameterized=None,
               compute_density=None,
               name=None):
        self._validate_sample_is_reparameterized_arg(is_reparameterized)
        if is_reparameterized is None:
            is_reparameterized = self.is_reparameterized

        with tf.name_scope(name, default_name='DiscretizedLogistic.sample'):
            # sample from uniform distribution
            sample_shape = self.batch_shape
            static_sample_shape = self.get_batch_shape()
            if n_samples is not None:
                sample_shape = tf.concat([[n_samples], sample_shape], 0)
                static_sample_shape = tf.TensorShape(
                    [None if is_tensor_object(n_samples) else n_samples]). \
                    concatenate(static_sample_shape)

            u = tf.random_uniform(shape=sample_shape,
                                  minval=self._epsilon,
                                  maxval=1. - self._epsilon,
                                  dtype=self._param_dtype)
            u.set_shape(static_sample_shape)

            # inverse CDF of the logistic
            inverse_logistic_cdf = maybe_check_numerics(
                tf.log(u) - tf.log(1. - u), 'inverse_logistic_cdf')

            # obtain the actual sample
            scale = maybe_check_numerics(tf.exp(self.log_scale, name='scale'),
                                         'scale')
            sample = self.mean + scale * inverse_logistic_cdf
            if self.discretize_sample:
                sample = self._discretize(sample)
            sample = maybe_check_numerics(sample, 'sample')
            sample = convert_to_tensor_and_cast(sample, self.dtype)

            if not is_reparameterized:
                sample = tf.stop_gradient(sample)

            t = StochasticTensor(distribution=self,
                                 tensor=sample,
                                 n_samples=n_samples,
                                 group_ndims=group_ndims,
                                 is_reparameterized=is_reparameterized)

            # compute the density
            if compute_density:
                compute_density_immediately(t)

            return t
コード例 #6
0
 def sample(self,
            n_samples=None,
            group_ndims=0,
            is_reparameterized=None,
            name=None):
     return StochasticTensor(
         self,
         x_samples,
         n_samples=n_samples,
         group_ndims=group_ndims,
         is_reparameterized=is_reparameterized,
     )
コード例 #7
0
    def sample(self,
               n_samples=1024,
               is_reparameterized=None,
               group_ndims=0,
               compute_density=False,
               name=None):

        from tfsnippet.stochastic import StochasticTensor
        if n_samples is None:
            n_samples = 1
            n_samples_is_none = True
        else:
            n_samples_is_none = False
        with tf.name_scope(name=name, default_name='sample'):
            noise = self.normal.sample(n_samples=n_samples)

            noise = tf.transpose(
                noise, [1, 0, 2])  # window_length * n_samples * z_dim
            noise = tf.truncated_normal(tf.shape(noise))

            # n_sample, batchsize, z_dim
            time_indices_shape = tf.convert_to_tensor(
                [n_samples, tf.shape(self.input_q)[1], self.z_dim])

            samples = tf.scan(
                fn=self.sample_step,
                elems=(noise, self.input_q),  #100*samples*3;  100*50*500
                initializer=(tf.zeros(time_indices_shape),
                             tf.zeros(time_indices_shape),
                             tf.ones(time_indices_shape)),
                back_prop=False)[
                    0]  # time_step * n_samples * batch_size * z_dim

            samples = tf.transpose(
                samples,
                [1, 2, 0, 3])  # n_samples * batch_size * time_step *  z_dim

            if n_samples_is_none:
                t = StochasticTensor(
                    distribution=self,
                    tensor=tf.reduce_mean(samples, axis=0),
                    n_samples=1,
                    group_ndims=group_ndims,
                    is_reparameterized=self.is_reparameterized)
            else:
                t = StochasticTensor(
                    distribution=self,
                    tensor=samples,
                    n_samples=n_samples,
                    group_ndims=group_ndims,
                    is_reparameterized=self.is_reparameterized)
            if compute_density:
                with tf.name_scope('compute_prob_and_log_prob'):
                    log_p = t.log_prob()
                    t._self_prob = tf.exp(log_p)
            return t
コード例 #8
0
    def sample(self,
               n_samples=None,
               group_ndims=0,
               is_reparameterized=None,
               compute_density=None,
               name=None):
        self._validate_sample_is_reparameterized_arg(is_reparameterized)

        #######################################################################
        # slow routine: generate the mixture by one_hot * stack([c.sample()]) #
        #######################################################################
        with tf.name_scope(name or 'Mixture.sample'):
            cat = self.categorical.sample(n_samples, group_ndims=0)
            mask = tf.one_hot(cat,
                              self.n_components,
                              dtype=self.dtype,
                              axis=-1)
            if self.value_ndims > 0:
                static_shape = (mask.get_shape().as_list() +
                                [1] * self.value_ndims)
                dynamic_shape = concat_shapes(
                    [get_shape(mask), [1] * self.value_ndims])
                mask = tf.reshape(mask, dynamic_shape)
                mask.set_shape(static_shape)
            mask = tf.stop_gradient(mask)

            # derive the mixture samples
            c_samples = [
                c.sample(n_samples, group_ndims=0) for c in self.components
            ]
            samples = tf.reduce_sum(
                mask * tf.stack(c_samples, axis=-self.value_ndims - 1),
                axis=-self.value_ndims - 1)

            if not self.is_reparameterized:
                samples = tf.stop_gradient(samples)

            t = StochasticTensor(distribution=self,
                                 tensor=samples,
                                 n_samples=n_samples,
                                 group_ndims=group_ndims,
                                 is_reparameterized=is_reparameterized)

            if compute_density:
                compute_density_immediately(t)

            return t
コード例 #9
0
ファイル: test_typeutils.py プロジェクト: shliujing/tfsnippet
    def test_is_tensor_object(self):
        for obj in [
                tf.constant(0.),  # type: tf.Tensor
                tf.get_variable('x', dtype=tf.float32, shape=()),
                TensorWrapper(),
                StochasticTensor(Mock(is_reparameterized=False),
                                 tf.constant(0.))
        ]:
            self.assertTrue(
                is_tensor_object(obj),
                msg='{!r} should be interpreted as a tensor object'.format(
                    obj))

        for obj in [1, '', object(), None, True, (), {}, [], np.zeros([1])]:
            self.assertFalse(
                is_tensor_object(obj),
                msg='{!r} should not be interpreted as a tensor object'.format(
                    obj))
コード例 #10
0
    def sample(self,
               n_samples=None,
               group_ndims=0,
               is_reparameterized=None,
               compute_density=None,
               name=None):
        group_ndims = validate_group_ndims_arg(group_ndims)
        if not compute_density and compute_density is not None:
            raise RuntimeError('`FlowDistribution` requires `compute_prob` '
                               'not to be False.')

        with tf.name_scope(name, default_name='FlowDistribution.sample'):
            # x and log p(x)
            ndims_diff = (self.flow.x_value_ndims -
                          self.base_distribution.value_ndims)
            x = self._distribution.sample(
                n_samples=n_samples,
                group_ndims=ndims_diff,
                is_reparameterized=is_reparameterized,
                compute_density=True)
            log_px = x.log_prob()

            # y, log |dy/dx|
            is_reparameterized = x.is_reparameterized
            y, log_det = self._flow.transform(x)
            if not is_reparameterized:
                y = tf.stop_gradient(y)  # important!

            # compute log p(y) = log p(x) - log |dy/dx|
            # and then apply `group_ndims` on log p(y)
            log_py = reduce_group_ndims(tf.reduce_sum, log_px - log_det,
                                        group_ndims)

            # compose the transformed tensor
            return StochasticTensor(distribution=self,
                                    tensor=y,
                                    n_samples=n_samples,
                                    group_ndims=group_ndims,
                                    is_reparameterized=is_reparameterized,
                                    log_prob=FlowDistributionDerivedTensor(
                                        tensor=log_py, flow_origin=x),
                                    flow_origin=x)
コード例 #11
0
    def log_prob(self, given, group_ndims=0, name=None):
        given = tf.convert_to_tensor(given)
        with tf.name_scope(name,
                           default_name='FlowDistribution.log_prob',
                           values=[given]):
            # x, log |dx/dy|
            x, log_det = self._flow.inverse_transform(given)

            # log p(x)
            ndims_diff = (self.flow.x_value_ndims -
                          self.base_distribution.value_ndims)
            log_px = self._distribution.log_prob(x, group_ndims=ndims_diff)

            # compute log p(y) = log p(x) + log |dx/dy|,
            # and then apply `group_ndims` on log p(x)
            log_py = reduce_group_ndims(tf.reduce_sum, log_px + log_det,
                                        group_ndims)

        return FlowDistributionDerivedTensor(
            tensor=log_py,
            flow_origin=StochasticTensor(distribution=self.base_distribution,
                                         tensor=x))
コード例 #12
0
    def sample(self,
               n_samples=None,
               is_reparameterized=None,
               group_ndims=0,
               compute_density=None,
               name=None):
        from tfsnippet.stochastic import StochasticTensor

        self._validate_sample_is_reparameterized_arg(is_reparameterized)

        if is_reparameterized is False and self.is_reparameterized:

            @contextlib.contextmanager
            def set_is_reparameterized():
                try:
                    self._distribution._is_reparameterized = False
                    yield False
                finally:
                    self._distribution._is_reparameterized = True
        else:

            @contextlib.contextmanager
            def set_is_reparameterized():
                yield self.is_reparameterized

        with tf.name_scope(name=name, default_name='sample'):
            with set_is_reparameterized() as is_reparameterized:
                samples = self._sample(n_samples=n_samples)
                t = StochasticTensor(
                    distribution=self,
                    tensor=samples,
                    n_samples=n_samples,
                    group_ndims=group_ndims,
                    is_reparameterized=is_reparameterized,
                )
                if compute_density:
                    compute_density_immediately(t)
                return t
コード例 #13
0
ファイル: bayes.py プロジェクト: shliujing/tfsnippet
    def add(self,
            name,
            distribution,
            n_samples=None,
            group_ndims=0,
            is_reparameterized=None):
        """
        Add a stochastic node to the network.

        A :class:`StochasticTensor` will be created for this node.
        If `name` exists in `observed` dict, its value will be used as the
        observation of this node.  Otherwise samples will be taken from
        `distribution`.

        Args:
            name (str): Name of the stochastic node.
            distribution (Distribution or zhusuan.distributions.Distribution):
                Distribution where the samples should be taken from.
            n_samples (int or tf.Tensor): Number of samples to take.
                If specified, `n_samples` will be taken, with a dedicated
                sampling dimension ``[n_samples]`` at the front.
                If not specified, just one sample will be taken, without the
                dedicated dimension.
            group_ndims (int or tf.Tensor): Number of dimensions at the end of
                ``[n_samples] + batch_shape`` to be considered as events group.
                (default 0)
            is_reparameterized: If observation is not given for `name`, this
                argument will be used to determine whether or not
                re-parameterization trick should be applied when taking
                samples from `distribution` (if not specified,  use
                `distribution.is_reparameterized`).

                If observation is given for `name`, and this argument is
                set to :obj:`True`, it will be used to validate the observation.
                If this argument is set to :obj:`False`, `tf.stop_gradient`
                will be applied on the observation.

        Returns:
            StochasticTensor: The sampled stochastic tensor.

        Raises:
            TypeError: If `name` is not a str, or `distribution` is a
                :class:`TransformedDistribution`.
            KeyError: If :class:`StochasticTensor` with `name` already exists.
            ValueError: If `transform` cannot be applied,
                or `is_reparameterized = True`, but the observation is not
                re-parameterized.

        See Also:
            :meth:`tfsnippet.distributions.Distribution.sample`
        """
        if not isinstance(name, six.string_types):
            raise TypeError('`name` must be a str')
        if name in self._stochastic_tensors:
            raise KeyError(
                'StochasticTensor with name {!r} already exists in '
                'the BayesianNet.  Names must be unique.'.format(name))

        distribution = as_distribution(distribution)

        if name in self._observed:
            ob_tensor = self._observed[name]
            if isinstance(ob_tensor, StochasticTensor):
                if is_reparameterized and not ob_tensor.is_reparameterized:
                    raise ValueError(
                        '`is_reparameterized` is True, but the observation '
                        'for `{}` is not re-parameterized: {}'.format(
                            name, ob_tensor))
                if is_reparameterized is None:
                    is_reparameterized = ob_tensor.is_reparameterized

            if not is_reparameterized:
                ob_tensor = tf.stop_gradient(ob_tensor)

            t = StochasticTensor(
                distribution=distribution,
                tensor=ob_tensor,
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
            )
        else:
            t = distribution.sample(
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
            )
            assert (isinstance(t, StochasticTensor))

        self._stochastic_tensors[name] = t
        return t
コード例 #14
0
ファイル: bayes.py プロジェクト: mengyuan404/tfsnippet
    def add(self, name, distribution, n_samples=None, group_ndims=0,
            is_reparameterized=None, flow=None):
        """
        Add a stochastic node to the network.

        A :class:`StochasticTensor` will be created for this node.
        If `name` exists in `observed` dict, its value will be used as the
        observation of this node.  Otherwise samples will be taken from
        `distribution`.

        Args:
            name (str): Name of the stochastic node.
            distribution (Distribution or zhusuan.distributions.Distribution):
                Distribution where the samples should be taken from.
            n_samples (int or tf.Tensor): Number of samples to take.
                If specified, `n_samples` will be taken, with a dedicated
                sampling dimension ``[n_samples]`` at the front.
                If not specified, just one sample will be taken, without the
                dedicated dimension.
            group_ndims (int or tf.Tensor): Number of dimensions at the end of
                ``[n_samples] + batch_shape`` to be considered as events group.
                (default 0)
            is_reparameterized: Whether or not the re-parameterization trick
                should be applied? (default :obj:`None`, following the setting
                of `distribution`)
            flow (BaseFlow): If specified, transform `distribution` by `flow`.

        Returns:
            StochasticTensor: The sampled stochastic tensor.

        Raises:
            TypeError: If `name` is not a str, or `distribution` is a
                :class:`TransformedDistribution`.
            KeyError: If :class:`StochasticTensor` with `name` already exists.
            ValueError: If `transform` cannot be applied.

        See Also:
            :meth:`tfsnippet.distributions.Distribution.sample`
        """
        if not isinstance(name, six.string_types):
            raise TypeError('`name` must be a str')
        if name in self._stochastic_tensors:
            raise KeyError('StochasticTensor with name {!r} already exists in '
                           'the BayesianNet.  Names must be unique.'.
                           format(name))
        if flow is not None and name in self._observed and \
                not flow.explicitly_invertible:
            raise TypeError('The observed variable {!r} expects `flow` to be '
                            'explicitly invertible, but it is not: {!r}.'.
                            format(name, flow))

        distribution = as_distribution(distribution)
        if flow is not None:
            distribution = FlowDistribution(distribution, flow)

        if name in self._observed:
            t = StochasticTensor(
                distribution=distribution,
                tensor=self._observed[name],
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
            )
        else:
            t = distribution.sample(
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
            )
            assert(isinstance(t, StochasticTensor))

        self._stochastic_tensors[name] = t
        return t
コード例 #15
0
    def test_prob_and_log_prob(self):
        # test default group_ndims
        distrib = Mock(
            is_reparameterized=True,
            log_prob=Mock(return_value=tf.constant(1.)),
            prob=Mock(return_value=tf.constant(2.)),
        )
        t = StochasticTensor(distrib, tf.constant(0.))
        given = t.tensor
        exp_1 = np.exp(1.).astype(np.float32)
        with self.test_session():
            self.assertEqual(t.log_prob().eval(), 1.)
            self.assertEqual(t.log_prob().eval(), 1.)
            np.testing.assert_allclose(t.prob().eval(), exp_1)
            np.testing.assert_allclose(t.prob().eval(), exp_1)
        self.assertEqual(distrib.log_prob.call_args_list, [((given, 0), {
            'name': None
        })])
        self.assertEqual(distrib.prob.call_args_list, [])

        # test group_ndims equal to default
        distrib.log_prob.reset_mock()
        distrib.prob.reset_mock()
        with self.test_session():
            self.assertEqual(t.log_prob(group_ndims=0).eval(), 1.)
            np.testing.assert_allclose(t.prob(group_ndims=0).eval(), exp_1)
        distrib.log_prob.assert_not_called()
        distrib.prob.assert_not_called()

        # test group_ndims different from default
        distrib.log_prob.reset_mock()
        distrib.prob.reset_mock()
        with self.test_session():
            self.assertEqual(t.log_prob(group_ndims=1).eval(), 1.)
            np.testing.assert_allclose(t.prob(group_ndims=2).eval(), exp_1)
        self.assertEqual(distrib.log_prob.call_args_list, [((given, 1), {
            'name': None
        }), ((given, 2), )])
        self.assertEqual(distrib.prob.call_args_list, [])

        # test use dynamic group_ndims
        t = StochasticTensor(distrib,
                             tf.constant(0.),
                             group_ndims=tf.constant(1, dtype=tf.int32))
        given = t.tensor
        distrib.log_prob.reset_mock()
        distrib.prob.reset_mock()
        with self.test_session():
            self.assertEqual(t.log_prob(group_ndims=t.group_ndims).eval(), 1.)
            self.assertEqual(t.log_prob(group_ndims=t.group_ndims).eval(), 1.)
            np.testing.assert_allclose(
                t.prob(group_ndims=t.group_ndims).eval(), exp_1)
            np.testing.assert_allclose(
                t.prob(group_ndims=t.group_ndims).eval(), exp_1)
        self.assertEqual(distrib.log_prob.call_args_list,
                         [((given, t.group_ndims), {
                             'name': None
                         })])
        self.assertEqual(distrib.prob.call_args_list, [])
コード例 #16
0
    def test_construction(self):
        distrib = Mock(is_reparameterized=True, is_continuous=True)
        samples = tf.constant(12345678., dtype=tf.float32)

        # test basic construction
        t = StochasticTensor(distrib, samples, n_samples=1, group_ndims=2)
        self.assertIs(t.distribution, distrib)
        self.assertTrue(t.is_reparameterized)
        self.assertTrue(t.is_continuous)
        self.assertEqual(t.n_samples, 1)
        self.assertEqual(t.group_ndims, 2)
        self.assertEqual(t.dtype, tf.float32)
        self.assertIsInstance(t.tensor, tf.Tensor)
        with self.test_session():
            self.assertEqual(t.eval(), 12345678.)
            self.assertEqual(t.tensor.eval(), 12345678)

        # test initializing from TensorWrapper
        samples = tf.constant(1.)
        t = StochasticTensor(Mock(is_reparameterized=False),
                             _MyTensorWrapper(samples))
        self.assertIs(t.tensor, samples)

        # test specifying is_reparameterized
        t = StochasticTensor(Mock(is_reparameterized=True),
                             tf.constant(0.),
                             is_reparameterized=False)
        self.assertFalse(t.is_reparameterized)

        # test construction with dynamic group_ndims
        t = StochasticTensor(distrib,
                             samples,
                             group_ndims=tf.constant(2, dtype=tf.int32))
        with self.test_session():
            self.assertEqual(t.group_ndims.eval(), 2)

        # test construction with bad dynamic group_ndims
        t = StochasticTensor(distrib,
                             samples,
                             group_ndims=tf.constant(-1, dtype=tf.int32))
        with self.test_session():
            with pytest.raises(Exception,
                               match='group_ndims must be non-negative'):
                _ = t.group_ndims.eval()

        # test construction with dynamic n_samples
        t = StochasticTensor(distrib,
                             samples,
                             n_samples=tf.constant(2, dtype=tf.int32))
        with self.test_session():
            self.assertEqual(t.n_samples.eval(), 2)

        # test construction with bad dynamic n_samples
        t = StochasticTensor(distrib,
                             samples,
                             n_samples=tf.constant(0, dtype=tf.int32))
        with self.test_session():
            with pytest.raises(Exception, match='n_samples must be positive'):
                _ = t.n_samples.eval()
コード例 #17
0
    def add(self,
            name,
            distribution,
            n_samples=None,
            group_ndims=0,
            is_reparameterized=None,
            transform=None):
        """
        Add a stochastic node to the network.

        A :class:`StochasticTensor` will be created for this node.
        If `name` exists in `observed` dict, its value will be used as the
        observation of this node.  Otherwise samples will be taken from
        `distribution`.

        Args:
            name (str): Name of the stochastic node.
            distribution (Distribution or zhusuan.distributions.Distribution):
                Distribution where the samples should be taken from.
            n_samples (int or tf.Tensor): Number of samples to take.
                If specified, `n_samples` will be taken, with a dedicated
                sampling dimension ``[n_samples]`` at the front.
                If not specified, just one sample will be taken, without the
                dedicated dimension.
            group_ndims (int or tf.Tensor): Number of dimensions at the end of
                ``[n_samples] + batch_shape`` to be considered as events group.
                (default 0)
            is_reparameterized: Whether or not the re-parameterization trick
                should be applied? (default :obj:`None`, following the setting
                of `distribution`)
            transform ((Tensor, Tensor) -> (tf.Tensor, tf.Tensor)):
                The function to transform (x, log_p) to (x', log_p').
                If specified, a :class:`StochasticTensor` will be sampled,
                then transformed, then wrapped by a :class:`StochasticTensor`
                with :class:`TransformedDistribution`.

        Returns:
            StochasticTensor: The sampled stochastic tensor.

        Raises:
            TypeError: If `name` is not a str, or `distribution` is a
                :class:`TransformedDistribution`.
            KeyError: If :class:`StochasticTensor` with `name` already exists.
            ValueError: If `transform` cannot be applied.

        See Also:
            :meth:`tfsnippet.distributions.Distribution.sample`
        """
        if not isinstance(name, six.string_types):
            raise TypeError('`name` must be a str')
        if name in self._stochastic_tensors:
            raise KeyError(
                'StochasticTensor with name {!r} already exists in '
                'the BayesianNet.  Names must be unique.'.format(name))
        if isinstance(distribution, TransformedDistribution):
            raise TypeError('Cannot add `TransformedDistribution`.')
        if transform is not None and \
                (not distribution.is_continuous or
                 not distribution.is_reparameterized or
                 is_reparameterized is False):
            raise ValueError('`transform` can only be applied on continuous, '
                             're-parameterized variables.')
        if transform is not None and name in self._observed:
            raise ValueError('`observed` variable cannot be transformed.')

        distribution = as_distribution(distribution)
        if name in self._observed:
            t = StochasticTensor(
                distribution=distribution,
                tensor=self._observed[name],
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
            )
        else:
            t = distribution.sample(
                n_samples=n_samples,
                group_ndims=group_ndims,
                is_reparameterized=is_reparameterized,
            )
            assert (isinstance(t, StochasticTensor))

            # do transformation
            if transform is not None:
                t_log_p = t.log_prob()
                ft, ft_log_p = transform(t, t_log_p)
                ft = tf.convert_to_tensor(ft)
                ft_log_p = tf.convert_to_tensor(ft_log_p)
                if not ft.dtype.is_floating:
                    raise ValueError('The transformed samples must be '
                                     'continuous: got {!r}'.format(ft))
                t = StochasticTensor(distribution=TransformedDistribution(
                    origin=t,
                    transformed=ft,
                    transformed_log_p=ft_log_p,
                    is_reparameterized=t.is_reparameterized,
                    is_continuous=True),
                                     tensor=ft,
                                     n_samples=t.n_samples,
                                     group_ndims=t.group_ndims,
                                     is_reparameterized=t.is_reparameterized)

        self._stochastic_tensors[name] = t
        return t
コード例 #18
0
 def test_repr(self):
     t = StochasticTensor(
         Mock(is_reparameterized=False),
         Mock(spec=tf.Tensor, __repr__=Mock(return_value='repr_output')))
     self.assertEqual(repr(t), 'StochasticTensor(repr_output)')