コード例 #1
0
def anabpsk(n_points, n_comp=None, f0=0.25):
    """Binary phase shift keying (BPSK) signal.

    :param n_points: number of points.
    :param n_comp: number of points in each component.
    :param f0: normalized frequency.
    :type n_points: int
    :type n_comp: int
    :type f0: float
    :return: BPSK signal
    :rtype: numpy.ndarray
    :Examples:
    >>> x, am = anabpsk(300, 30, 0.1)
    >>> subplot(211), plot(real(x))
    >>> subplot(212), plot(am)

    .. plot:: docstring_plots/generators/analytic_signals/anabpsk.py
    """
    if n_comp is None:
        n_comp = np.round(n_points / 5)
    if (f0 < 0) or (f0 > 0.5):
        raise TypeError("f0 must be between 0 and 0.5")
    m = int(np.ceil(n_points / n_comp))
    jumps = 2.0 * np.round(np.random.rand(m)) - 1
    am = np.kron(jumps, np.ones((n_comp,)))[:n_points]
    y = am * fmconst(n_points, f0, 1)[0]
    return y, am
コード例 #2
0
def anaask(n_points, n_comp=None, f0=0.25):
    """Generate an amplitude shift (ASK) keying signal.

    :param n_points: number of points.
    :param n_comp: number of points of each component.
    :param f0: normalized frequency.
    :type n_points: int
    :type n_comp: int
    :type f0: float
    :return: Tuple containing the modulated signal and the amplitude modulation.
    :rtype: tuple(numpy.ndarray)
    :Examples:
    >>> x, am = anaask(512, 64, 0.05)
    >>> subplot(211), plot(real(x))
    >>> subplot(212), plot(am)

    .. plot:: docstring_plots/generators/analytic_signals/anaask.py
    """
    if n_comp is None:
        n_comp = np.round(n_points / 2)
    if (f0 < 0) or (f0 > 0.5):
        raise TypeError("f0 must be between 0 and 0.5")
    m = int(np.ceil(n_points / n_comp))
    jumps = np.random.rand(m)
    am = np.kron(jumps, np.ones((n_comp,)))[:n_points]
    fm, iflaw = fmconst(n_points, f0, 1)
    y = am * fm
    return y, am
コード例 #3
0
def anaask(n_points, n_comp=None, f0=0.25):
    """Generate an amplitude shift (ASK) keying signal.

    :param n_points: number of points.
    :param n_comp: number of points of each component.
    :param f0: normalized frequency.
    :type n_points: int
    :type n_comp: int
    :type f0: float
    :return: Tuple containing the modulated signal and the amplitude modulation.
    :rtype: tuple(numpy.ndarray)
    :Examples:
    >>> x, am = anaask(512, 64, 0.05)
    >>> subplot(211), plot(real(x)) #doctest: +SKIP
    >>> subplot(212), plot(am)      #doctest: +SKIP

    .. plot:: docstring_plots/generators/analytic_signals/anaask.py
    """
    if n_comp is None:
        n_comp = round(n_points / 2.0)
    if (f0 < 0) or (f0 > 0.5):
        raise TypeError("f0 must be between 0 and 0.5")
    m = int(np.ceil(n_points / n_comp))
    jumps = np.random.rand(m)
    am = np.repeat(jumps, n_comp)[:n_points]
    fm, _ = fmconst(n_points, f0, 1)
    y = am * fm
    return y, am
コード例 #4
0
def anabpsk(n_points, n_comp=None, f0=0.25):
    """Binary phase shift keying (BPSK) signal.

    :param n_points: number of points.
    :param n_comp: number of points in each component.
    :param f0: normalized frequency.
    :type n_points: int
    :type n_comp: int
    :type f0: float
    :return: BPSK signal
    :rtype: numpy.ndarray
    :Examples:
    >>> x, am = anabpsk(300, 30, 0.1)
    >>> subplot(211), plot(real(x)) #doctest: +SKIP
    >>> subplot(212), plot(am)      #doctest: +SKIP

    .. plot:: docstring_plots/generators/analytic_signals/anabpsk.py
    """
    if n_comp is None:
        n_comp = round(n_points / 5.0)
    if (f0 < 0) or (f0 > 0.5):
        raise TypeError("f0 must be between 0 and 0.5")
    m = int(np.ceil(n_points / n_comp))
    jumps = 2.0 * np.round(np.random.rand(m)) - 1
    am = np.repeat(jumps, n_comp)[:n_points]
    y = am * fmconst(n_points, f0, 1)[0]
    return y, am
コード例 #5
0
======================================================

This example uses Friedman's method to calculate the instantaneous frequency
density of a hybrid signal. The method consists of computing the histograms of
frequency displacements of the spectrogram of the signal.

"""

import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import fmlin, fmsin, fmconst
from tftb.processing.reassigned import pseudo_wigner_ville
from tftb.processing.postprocessing import friedman_density

sig1, if1 = fmsin(60, 0.16, 0.35, 50, 1, 0.35, 1)
sig2, if2 = fmlin(60, 0.3, 0.1)
sig3, if3 = fmconst(60, 0.4)
sig = np.hstack((sig1, np.zeros((8,)), sig2 + sig3))

t = np.arange(1, 128, step=2)
tfr, rtfr, hat = pseudo_wigner_ville(sig, timestamps=t)
tifd = friedman_density(tfr, hat, t)
f = np.linspace(0, 0.5, tifd.shape[0])

plt.contour(t, f, tifd, 4)
plt.grid(True)
plt.title("Friedman's instantaenous frequency density")
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.show()
コード例 #6
0
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.

"""
==========================================================================
Pseudo-Wigner-Ville Distribution of a Gaussian Atom and a Complex Sinusoid
==========================================================================

This example demonstrates the pseudo Wigner Ville distribution of a signal
composed from a Gaussian atom and a complex sinusoid with constant frequency
modulation. Note that the frequency resolution is relatively worse than that of
the Wigner-Ville representation, and the interferences have not been resolved
properly.

"""

from tftb.generators import fmconst, amgauss
from tftb.processing import PseudoWignerVilleDistribution
import numpy as np

sig = fmconst(128, 0.15)[0] + amgauss(128) * fmconst(128, 0.4)[0]
tfr = PseudoWignerVilleDistribution(sig)
tfr.run()
tfr.plot(show_tf=True, kind="contour",
        freq_x=(abs(np.fft.fftshift(np.fft.fft(sig))) ** 2)[::-1][:64],
        freq_y=np.arange(sig.shape[0] / 2))
コード例 #7
0
ファイル: fmconst.py プロジェクト: xz885511/pytftb
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.
"""

"""

from tftb.generators import amgauss, fmconst
import numpy as np
import matplotlib.pyplot as plt

z = amgauss(128, 50.0, 30.0) * fmconst(128, 0.05, 50)[0]
plt.plot(np.real(z))
plt.xlim(0, 128)
plt.grid()
plt.title('Constant Frequency Modulation')
plt.show()
コード例 #8
0
ファイル: linear.py プロジェクト: markyoder/pytftb
    msig = hn1.reshape(int(nb), int(m), order='F')
    dzth = np.fft.fft(msig.T, axis=0) / np.sqrt(m)
    mzh = np.zeros((m, mb))
    x = np.arange(1, m + 1, dtype=float)
    for l in range(q_oversample):
        mod = modulo(x - l * m / q_oversample, m).astype(int)
        mzh += np.abs(dzth[mod - 1, :]) ** 2

    mzh[mzh < np.spacing(1)] = 1

    # Za transform of biorthogonal dual frame window gam
    dztgam = dzth / mzh
    gam = np.real(izak(dztgam)) / signal.shape[0]

    # Computation of Gabor coefficient of dual frame window.
    dgrn1 = np.zeros((signal.shape[0], n_coeff), dtype=complex)
    k = np.arange(1, signal.shape[0] + 1)
    for n in range(n_coeff):
        index = modulo(k - n * m / q_oversample, signal.shape[0]).astype(int) - 1
        dgrn1[:, n] = np.fft.fft(signal * np.fft.fftshift(gam[index]), axis=0)
    dgr = dgrn1[np.arange(signal.shape[0], step=nb).astype(int), :]
    tfr = np.abs(dgr) ** 2
    return tfr, dgr, gam

if __name__ == '__main__':
    from tftb.generators import fmconst
    sig = np.r_[fmconst(128, 0.2)[0], fmconst(128, 0.4)[0]]
    tfr = ShortTimeFourierTransform(sig)
    tfr.run()
    tfr.plot()
コード例 #9
0
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.

"""
====================================================================================================================
Monocomponent Nonstationary Signal with Constant Frequency Modulation and One-Sided Exponential Amplitude Modulation
====================================================================================================================

Generate a monocomponent nonstationary signal with constant frequency
modulation and one-sided exponential amplitude modulation.

"""

from tftb.generators import fmconst, amexpos
import matplotlib.pyplot as plt
from numpy import real

fm, _ = fmconst(256, 0.2)
am = amexpos(256, 100, kind='unilateral')
signal = am * fm

plt.plot(real(signal))
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Constant Frequency, One-sided Exponential Amplitude')
plt.xlim(0, 256)
plt.grid()
plt.show()
コード例 #10
0
This example demonstrates the visualization of the Morlet scalogram of a signal
containing two complex sinusoids. In a scalogram, the frequency resolution
varies on the scale of the signal. Here, the frequency resolution decreases at
higher frequencies (lower scale).

Figure 3.20 from the tutorial.
"""

from tftb.processing import Scalogram
from tftb.generators import fmconst
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt

sig2 = fmconst(128, .15)[0] + fmconst(128, .35)[0]
tfr, t, freqs, _ = Scalogram(sig2, time_instants=np.arange(1, 129), waveparams=6,
                         fmin=0.05, fmax=0.45, n_voices=128).run()
tfr = np.abs(tfr) ** 2
threshold = np.amax(tfr) * 0.05
tfr[tfr <= threshold] = 0.0
t, f = np.meshgrid(t, freqs)

fig, axContour = plt.subplots(figsize=(10, 8))
axContour.contour(t, f, tfr)
axContour.grid(True)
axContour.set_title("Morlet scalogram")
axContour.set_ylabel('Frequency')
axContour.yaxis.set_label_position('right')
axContour.set_xlabel('Time')
コード例 #11
0
ファイル: linear.py プロジェクト: jaidevd/pytftb
    for l in range(q_oversample):  # NOQA: E741
        mod = modulo(x - l * m / q_oversample, m).astype(int)
        mzh += np.abs(dzth[mod - 1, :])**2

    mzh[mzh < np.spacing(1)] = 1

    # Za transform of biorthogonal dual frame window gam
    dztgam = dzth / mzh
    gam = np.real(izak(dztgam)) / signal.shape[0]

    # Computation of Gabor coefficient of dual frame window.
    dgrn1 = np.zeros((signal.shape[0], n_coeff), dtype=complex)
    k = np.arange(1, signal.shape[0] + 1)
    for n in range(n_coeff):
        index = modulo(k - n * m / q_oversample,
                       signal.shape[0]).astype(int) - 1
        dgrn1[:, n] = np.fft.fft(signal * np.fft.fftshift(gam[index]), axis=0)
    dgr = dgrn1[np.arange(signal.shape[0], step=nb).astype(int), :]
    tfr = np.abs(dgr)**2
    return tfr, dgr, gam


if __name__ == '__main__':
    from tftb.generators import fmconst
    import matplotlib.pyplot as plt
    sig = np.r_[fmconst(128, 0.2)[0], fmconst(128, 0.4)[0]]
    ts = np.linspace(0, 1, 256)
    tfr = ShortTimeFourierTransform(sig, timestamps=ts)
    tfr.run()
    tfr.plot(show_tf=True, cmap=plt.cm.viridis)
コード例 #12
0
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.
"""
====================================================================================================================
Monocomponent Nonstationary Signal with Constant Frequency Modulation and One-Sided Exponential Amplitude Modulation
====================================================================================================================

Generate a monocomponent nonstationary signal with constant frequency
modulation and one-sided exponential amplitude modulation.

Figure 2.7 from the tutorial.
"""

from tftb.generators import fmconst, amexpos
import matplotlib.pyplot as plt
from numpy import real

fm, _ = fmconst(256, 0.2)
am = amexpos(256, 100, kind='unilateral')
signal = am * fm

plt.plot(real(signal))
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Constant Frequency, One-sided Exponential Amplitude')
plt.xlim(0, 256)
plt.grid()
plt.show()
コード例 #13
0
This example demonstrates the visualization of the Morlet scalogram of a signal
containing two complex sinusoids. In a scalogram, the frequency resolution
varies on the scale of the signal. Here, the frequency resolution decreases at
higher frequencies (lower scale).

Figure 3.20 from the tutorial.
"""

from tftb.processing import Scalogram
from tftb.generators import fmconst
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt

sig2 = fmconst(128, .15)[0] + fmconst(128, .35)[0]
tfr, t, freqs, _ = Scalogram(sig2, time_instants=np.arange(1, 129), waveparams=6,
                         fmin=0.05, fmax=0.45, n_voices=128).run()
tfr = np.abs(tfr) ** 2
threshold = np.amax(tfr) * 0.05
tfr[tfr <= threshold] = 0.0
t, f = np.meshgrid(t, freqs)

fig, axContour = plt.subplots(figsize=(10, 8))
axContour.contour(t, f, tfr)
axContour.grid(True)
axContour.set_title("Morlet scalogram")
axContour.set_ylabel('Frequency')
axContour.yaxis.set_label_position('right')
axContour.set_xlabel('Time')
コード例 #14
0
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.
"""
==========================================================================
Pseudo-Wigner-Ville Distribution of a Gaussian Atom and a Complex Sinusoid
==========================================================================

This example demonstrates the pseudo Wigner Ville distribution of a signal
composed from a Gaussian atom and a complex sinusoid with constant frequency
modulation. Note that the frequency resolution is relatively worse than that of
the Wigner-Ville representation, and the interferences have not been resolved
properly.

Figure 4.9 from the tutorial.
"""

from tftb.generators import fmconst, amgauss
from tftb.processing import PseudoWignerVilleDistribution

sig = fmconst(128, 0.15)[0] + amgauss(128) * fmconst(128, 0.4)[0]
tfr = PseudoWignerVilleDistribution(sig)
tfr.run()
tfr.plot(show_tf=True, kind="contour")
コード例 #15
0
    * One-sided exponential amplitude modulation (See :ref:`amexpos`)
    * Constant frequency modulation (See :ref:`fmconst`)
    * -5 dB complex gaussian noise (See :ref:`noisecg` and :ref:`sigmerge`)

And how to plot its energy spectrum.

Figure 1.10 of the tutorial.
"""


import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import amexpos, fmconst, sigmerge, noisecg

# Generate a noisy transient signal.
transsig = amexpos(64, kind='unilateral') * fmconst(64)[0]
signal = np.hstack((np.zeros((100,)), transsig, np.zeros((92,))))
signal = sigmerge(signal, noisecg(256), -5)
fig, ax = plt.subplots(2, 1)
ax1, ax2 = ax
ax1.plot(np.real(signal))
ax1.grid()
ax1.set_title('Noisy Transient Signal')
ax1.set_xlabel('Time')
ax1.set_xlim((0, 256))
ax1.set_ylim((np.real(signal).max(), np.real(signal.min())))

# Energy spectrum of the signal
dsp = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
ax2.plot(np.arange(-128, 128, dtype=float) / 256, dsp)
ax2.set_title('Energy spectrum of noisy transient signal')
コード例 #16
0
Comparison of the Wigner Ville distribution with its smoothed and reassinged
counterparts.

Figure 4.35 from the tutorial.
"""

import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import fmsin, fmlin, fmconst
from tftb.processing import (ideal_tfr, WignerVilleDistribution,
                             smoothed_pseudo_wigner_ville,
                             reassigned_smoothed_pseudo_wigner_ville)

sig1, if1 = fmsin(60, 0.16, 0.35, 50, 1, 0.35, 1)
sig2, if2 = fmlin(60, 0.3, 0.1)
sig3, if3 = fmconst(60, 0.4)

sig = np.hstack((sig1, np.zeros((8, )), sig2 + sig3))
iflaw = np.zeros((2, 128))
iflaw[0, :] = np.hstack((if1, np.nan * np.ones((8, )), if2))
iflaw[1, :] = np.hstack((np.nan * np.ones((68, )), if3))

tfr, t, f = ideal_tfr(iflaw)

plt.figure(figsize=(10, 8))
plt.subplot(221)
plt.contour(t, f, tfr, 1)
plt.gca().set_xticklabels([])
plt.grid(True)
plt.title("Ideal instantaneous frequencies")
plt.ylabel('Normalized Frequencies')
コード例 #17
0
T = np.arange(1, N + 1, step=4)
t = np.arange(1, N + 1)

p = N / 2

fmin1 = 1.0 / 64
fmax1 = 1.5 * 1.0 / 8
x1 = fmsin(N, fmin1, fmax1, p, N / 2, fmax1)[0]

fmin2 = 1.0 / 32
fmax2 = 1.5 * 1.0 / 4
x2 = fmsin(N, fmin2, fmax2, p, N / 2, fmax2)[0]

f0 = 1.5 * 1.0 / 16

x3 = amgauss(N, N / 2, N / 8) * fmconst(N, f0)[0]

a1 = 1
a2 = 1
a3 = 1

x = np.real(a1 * x1 + a2 * x2 + a3 * x3)
x = x / np.max(np.abs(x))

decomposer = EMD(x)
imf = decomposer.decompose()

n_freq_bins = 256
short_window_length = 127
beta = 3 * np.pi
window = kaiser(short_window_length, beta=beta)
コード例 #18
0
characteristics:
    * One-sided exponential amplitude modulation (See :ref:`amexpos`)
    * Constant frequency modulation (See :ref:`fmconst`)
    * -5 dB complex gaussian noise (See :ref:`noisecg` and :ref:`sigmerge`)

And how to plot its energy spectrum.

"""


import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import amexpos, fmconst, sigmerge, noisecg

# Generate a noisy transient signal.
transsig = amexpos(64, kind="unilateral") * fmconst(64)[0]
signal = np.hstack((np.zeros((100,)), transsig, np.zeros((92,))))
signal = sigmerge(signal, noisecg(256), -5)
fig, ax = plt.subplots(2, 1)
ax1, ax2 = ax
ax1.plot(np.real(signal))
ax1.grid()
ax1.set_title("Noisy Transient Signal")
ax1.set_xlabel("Time")
ax1.set_xlim((0, 256))
ax1.set_ylim((np.real(signal).max(), np.real(signal.min())))

# Energy spectrum of the signal
dsp = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
ax2.plot(np.arange(-128, 128, dtype=float) / 256, dsp)
ax2.set_title("Energy spectrum of noisy transient signal")
コード例 #19
0
ファイル: fmconst.py プロジェクト: dafx/pytftb
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.

"""

"""

from tftb.generators import amgauss, fmconst
import numpy as np
import matplotlib.pyplot as plt

z = amgauss(128, 50.0, 30.0) * fmconst(128, 0.05, 50)[0]
plt.plot(np.real(z))
plt.xlim(0, 128)
plt.grid()
plt.title('Constant Frequency Modulation')
plt.show()
コード例 #20
0
#
# Copyright © 2015 jaidev <jaidev@newton>
#
# Distributed under terms of the MIT license.
"""
=======================================
Spectrogram of a Noisy Transient Signal
=======================================

This example demonstrates the simple use of a Spectrogram to localize a signal
in time and frequency. The transient signal appears at the normalized frequency
0.25 and between time points 125 and 160.

Figure 1.11 from the tutorial.
"""

import numpy as np
from scipy.signal import hamming
from tftb.generators import amexpos, fmconst, sigmerge, noisecg
from tftb.processing.cohen import Spectrogram

# Generate a noisy transient signal.
transsig = amexpos(64, kind='unilateral') * fmconst(64)[0]
signal = np.hstack((np.zeros((100, )), transsig, np.zeros((92, ))))
signal = sigmerge(signal, noisecg(256), -5)

fwindow = hamming(65)
spec = Spectrogram(signal, n_fbins=128, fwindow=fwindow)
spec.run()
spec.plot(kind="contour", threshold=0.1, show_tf=False)
コード例 #21
0
===========================================

This example demonstrates the visualization of the Morlet scalogram of a signal
containing two complex sinusoids. In a scalogram, the frequency resolution
varies on the scale of the signal. Here, the frequency resolution decreases at
higher frequencies (lower scale).

"""

from tftb.processing import scalogram
from tftb.generators import fmconst
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt

sig2 = fmconst(128, 0.15)[0] + fmconst(128, 0.35)[0]
tfr, t, f, _ = scalogram(sig2, time_instants=np.arange(1, 129), waveparams=6, fmin=0.05, fmax=0.45, n_voices=128)
tfr = np.abs(tfr) ** 2
threshold = np.amax(tfr) * 0.05
tfr[tfr <= threshold] = 0.0
t, f = np.meshgrid(t, f)

fig, axContour = plt.subplots(figsize=(10, 8))
axContour.contour(t, f, tfr)
axContour.grid(True)
axContour.set_title("Morlet scalogram")
axContour.set_ylabel("Frequency")
axContour.yaxis.set_label_position("right")
axContour.set_xlabel("Time")

divider = make_axes_locatable(axContour)