def unet2D_bn_modified(images, training, nlabels): images_padded = tf.pad(images, [[0,0], [92, 92], [92, 92], [0,0]], 'CONSTANT') conv1_1 = layers.conv2D_layer_bn(images_padded, 'conv1_1', num_filters=64, training=training, padding='VALID') conv1_2 = layers.conv2D_layer_bn(conv1_1, 'conv1_2', num_filters=64, training=training, padding='VALID') pool1 = layers.max_pool_layer2d(conv1_2) conv2_1 = layers.conv2D_layer_bn(pool1, 'conv2_1', num_filters=128, training=training, padding='VALID') conv2_2 = layers.conv2D_layer_bn(conv2_1, 'conv2_2', num_filters=128, training=training, padding='VALID') pool2 = layers.max_pool_layer2d(conv2_2) conv3_1 = layers.conv2D_layer_bn(pool2, 'conv3_1', num_filters=256, training=training, padding='VALID') conv3_2 = layers.conv2D_layer_bn(conv3_1, 'conv3_2', num_filters=256, training=training, padding='VALID') pool3 = layers.max_pool_layer2d(conv3_2) conv4_1 = layers.conv2D_layer_bn(pool3, 'conv4_1', num_filters=512, training=training, padding='VALID') conv4_2 = layers.conv2D_layer_bn(conv4_1, 'conv4_2', num_filters=512, training=training, padding='VALID') pool4 = layers.max_pool_layer2d(conv4_2) conv5_1 = layers.conv2D_layer_bn(pool4, 'conv5_1', num_filters=1024, training=training, padding='VALID') conv5_2 = layers.conv2D_layer_bn(conv5_1, 'conv5_2', num_filters=1024, training=training, padding='VALID') upconv4 = layers.deconv2D_layer_bn(conv5_2, name='upconv4', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat4 = layers.crop_and_concat_layer([upconv4, conv4_2], axis=3) conv6_1 = layers.conv2D_layer_bn(concat4, 'conv6_1', num_filters=512, training=training, padding='VALID') conv6_2 = layers.conv2D_layer_bn(conv6_1, 'conv6_2', num_filters=512, training=training, padding='VALID') upconv3 = layers.deconv2D_layer_bn(conv6_2, name='upconv3', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat3 = layers.crop_and_concat_layer([upconv3, conv3_2], axis=3) conv7_1 = layers.conv2D_layer_bn(concat3, 'conv7_1', num_filters=256, training=training, padding='VALID') conv7_2 = layers.conv2D_layer_bn(conv7_1, 'conv7_2', num_filters=256, training=training, padding='VALID') upconv2 = layers.deconv2D_layer_bn(conv7_2, name='upconv2', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat2 = layers.crop_and_concat_layer([upconv2, conv2_2], axis=3) conv8_1 = layers.conv2D_layer_bn(concat2, 'conv8_1', num_filters=128, training=training, padding='VALID') conv8_2 = layers.conv2D_layer_bn(conv8_1, 'conv8_2', num_filters=128, training=training, padding='VALID') upconv1 = layers.deconv2D_layer_bn(conv8_2, name='upconv1', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat1 = layers.crop_and_concat_layer([upconv1, conv1_2], axis=3) conv9_1 = layers.conv2D_layer_bn(concat1, 'conv9_1', num_filters=64, training=training, padding='VALID') conv9_2 = layers.conv2D_layer_bn(conv9_1, 'conv9_2', num_filters=64, training=training, padding='VALID') pred = layers.conv2D_layer_bn(conv9_2, 'pred', num_filters=nlabels, kernel_size=(1,1), activation=tf.identity, training=training, padding='VALID') return pred
def unet3D_bn(images, training, nlabels): images_padded = tf.pad(images, [[0, 0], [44, 44], [44, 44],[44, 44], [0, 0]], 'CONSTANT') conv1_1 = layers.conv3D_layer_bn(images_padded, 'conv1_1', num_filters=32, kernel_size=(3,3,3), training=training, padding='VALID') conv1_2 = layers.conv3D_layer_bn(conv1_1, 'conv1_2', num_filters=64, kernel_size=(3,3,3), training=training, padding='VALID') pool1 = layers.max_pool_layer3d(conv1_2, kernel_size=(2,2,2), strides=(2,2,2)) conv2_1 = layers.conv3D_layer_bn(pool1, 'conv2_1', num_filters=64, kernel_size=(3,3,3), training=training, padding='VALID') conv2_2 = layers.conv3D_layer_bn(conv2_1, 'conv2_2', num_filters=128, kernel_size=(3,3,3), training=training, padding='VALID') pool2 = layers.max_pool_layer3d(conv2_2, kernel_size=(2,2,2), strides=(2,2,2)) conv3_1 = layers.conv3D_layer_bn(pool2, 'conv3_1', num_filters=128, kernel_size=(3,3,3), training=training, padding='VALID') conv3_2 = layers.conv3D_layer_bn(conv3_1, 'conv3_2', num_filters=256, kernel_size=(3,3,3), training=training, padding='VALID') pool3 = layers.max_pool_layer3d(conv3_2, kernel_size=(2,2,2), strides=(2,2,2)) conv4_1 = layers.conv3D_layer_bn(pool3, 'conv4_1', num_filters=256, kernel_size=(3,3,3), training=training, padding='VALID') conv4_2 = layers.conv3D_layer_bn(conv4_1, 'conv4_2', num_filters=512, kernel_size=(3,3,3), training=training, padding='VALID') upconv3 = layers.deconv3D_layer_bn(conv4_2, name='upconv3', kernel_size=(4, 4, 4), strides=(2, 2, 2), num_filters=512, training=training) concat3 = layers.crop_and_concat_layer([upconv3, conv3_2], axis=4) conv5_1 = layers.conv3D_layer_bn(concat3, 'conv5_1', num_filters=256, kernel_size=(3,3,3), training=training, padding='VALID') conv5_2 = layers.conv3D_layer_bn(conv5_1, 'conv5_2', num_filters=256, kernel_size=(3,3,3), training=training, padding='VALID') upconv2 = layers.deconv3D_layer_bn(conv5_2, name='upconv2', kernel_size=(4, 4, 4), strides=(2, 2, 2), num_filters=256, training=training) concat2 = layers.crop_and_concat_layer([upconv2, conv2_2], axis=4) conv6_1 = layers.conv3D_layer_bn(concat2, 'conv6_1', num_filters=128, kernel_size=(3,3,3), training=training, padding='VALID') conv6_2 = layers.conv3D_layer_bn(conv6_1, 'conv6_2', num_filters=128, kernel_size=(3,3,3), training=training, padding='VALID') upconv1 = layers.deconv3D_layer_bn(conv6_2, name='upconv1', kernel_size=(4, 4, 2), strides=(2, 2, 2), num_filters=128, training=training) concat1 = layers.crop_and_concat_layer([upconv1, conv1_2], axis=4) conv8_1 = layers.conv3D_layer_bn(concat1, 'conv8_1', num_filters=64, kernel_size=(3,3,3), training=training, padding='VALID') conv8_2 = layers.conv3D_layer_bn(conv8_1, 'conv8_2', num_filters=64, kernel_size=(3,3,3), training=training, padding='VALID') pred = layers.conv3D_layer_bn(conv8_2, 'pred', num_filters=nlabels, kernel_size=(1,1,1), activation=tf.identity, training=training, padding='VALID') return pred
def forward(images, training, nlabels): conv1_1 = layers.conv2D_layer_bn(images, 'conv1_1', num_filters=64, training=training, padding='SAME') conv1_2 = layers.conv2D_layer_bn(conv1_1, 'conv1_2', num_filters=64, training=training, padding='SAME') pool1 = layers.max_pool_layer2d(conv1_2, 'pool_1') conv2_1 = layers.conv2D_layer_bn(pool1, 'conv2_1', num_filters=128, training=training, padding='SAME') conv2_2 = layers.conv2D_layer_bn(conv2_1, 'conv2_2', num_filters=128, training=training, padding='SAME') pool2 = layers.max_pool_layer2d(conv2_2, 'pool_2') dout2 = layers.dropout_layer(pool2, 'dropout_2', training) conv3_1 = layers.conv2D_layer_bn(dout2, 'conv3_1', num_filters=256, training=training, padding='SAME') conv3_2 = layers.conv2D_layer_bn(conv3_1, 'conv3_2', num_filters=256, training=training, padding='SAME') pool3 = layers.max_pool_layer2d(conv3_2, 'pool_3') dout3 = layers.dropout_layer(pool3, 'dropout_3', training) conv4_1 = layers.conv2D_layer_bn(dout3, 'conv4_1', num_filters=512, training=training, padding='SAME') conv4_2 = layers.conv2D_layer_bn(conv4_1, 'conv4_2', num_filters=512, training=training, padding='SAME') pool4 = layers.max_pool_layer2d(conv4_2, 'pool_4') dout4 = layers.dropout_layer(pool4, 'dropout_4', training) conv5_1 = layers.conv2D_layer_bn(dout4, 'conv5_1', num_filters=1024, training=training, padding='SAME') conv5_2 = layers.conv2D_layer_bn(conv5_1, 'conv5_2', num_filters=1024, training=training, padding='SAME') upconv4 = layers.deconv2D_layer_bn(conv5_2, name='upconv4', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat4 = layers.crop_and_concat_layer([upconv4, conv4_2], 'crop_concat_4', axis=3) dout5 = layers.dropout_layer(concat4, 'dropout_5', training) conv6_1 = layers.conv2D_layer_bn(dout5, 'conv6_1', num_filters=512, training=training, padding='SAME') conv6_2 = layers.conv2D_layer_bn(conv6_1, 'conv6_2', num_filters=512, training=training, padding='SAME') upconv3 = layers.deconv2D_layer_bn(conv6_2, name='upconv3', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat3 = layers.crop_and_concat_layer([upconv3, conv3_2], 'crop_concat_3', axis=3) dout6 = layers.dropout_layer(concat3, 'dropout_6', training) conv7_1 = layers.conv2D_layer_bn(dout6, 'conv7_1', num_filters=256, training=training, padding='SAME') conv7_2 = layers.conv2D_layer_bn(conv7_1, 'conv7_2', num_filters=256, training=training, padding='SAME') upconv2 = layers.deconv2D_layer_bn(conv7_2, name='upconv2', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat2 = layers.crop_and_concat_layer([upconv2, conv2_2], 'crop_concat_2', axis=3) dout7 = layers.dropout_layer(concat2, 'dropout_7', training) conv8_1 = layers.conv2D_layer_bn(dout7, 'conv8_1', num_filters=128, training=training, padding='SAME') conv8_2 = layers.conv2D_layer_bn(conv8_1, 'conv8_2', num_filters=128, training=training, padding='SAME') upconv1 = layers.deconv2D_layer_bn(conv8_2, name='upconv1', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, training=training) concat1 = layers.crop_and_concat_layer([upconv1, conv1_2], 'crop_concat_1', axis=3) conv9_1 = layers.conv2D_layer_bn(concat1, 'conv9_1', num_filters=64, training=training, padding='SAME') conv9_2 = layers.conv2D_layer_bn(conv9_1, 'conv9_2', num_filters=64, training=training, padding='SAME') pred_1 = layers.conv2D_layer_bn(conv9_2, 'pred', num_filters=nlabels, kernel_size=(1, 1), activation=tf.identity, training=training, padding='SAME') # Deep supervision ds1_1 = layers.conv2D_layer(conv7_2, 'ds_1', num_filters=nlabels, kernel_size=(1, 1), activation=tf.identity, padding='SAME') ds1_2 = layers.deconv2D_layer(ds1_1, 'ds_2', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, padding='SAME') ds2_1 = layers.conv2D_layer(conv8_2, 'ds_3', num_filters=nlabels, kernel_size=(1, 1), activation=tf.identity, padding='SAME') ds1_ds2 = tf.add(ds1_2, ds2_1) ds = layers.deconv2D_layer(ds1_ds2, 'ds_4', kernel_size=(4, 4), strides=(2, 2), num_filters=nlabels, padding='SAME') pred_2 = tf.add(pred_1, ds) return pred_2
def unet_16_2D_bn(x, training, scope_name='generator'): n_ch_0 = 16 with tf.variable_scope(scope_name): conv1_1 = layers.conv2D_layer_bn(x, 'conv1_1', num_filters=n_ch_0, training=training) conv1_2 = layers.conv2D_layer_bn(conv1_1, 'conv1_2', num_filters=n_ch_0, training=training) pool1 = layers.maxpool2D_layer(conv1_2) conv2_1 = layers.conv2D_layer_bn(pool1, 'conv2_1', num_filters=n_ch_0 * 2, training=training) conv2_2 = layers.conv2D_layer_bn(conv2_1, 'conv2_2', num_filters=n_ch_0 * 2, training=training) pool2 = layers.maxpool2D_layer(conv2_2) conv3_1 = layers.conv2D_layer_bn(pool2, 'conv3_1', num_filters=n_ch_0 * 4, training=training) conv3_2 = layers.conv2D_layer_bn(conv3_1, 'conv3_2', num_filters=n_ch_0 * 4, training=training) pool3 = layers.maxpool2D_layer(conv3_2) conv4_1 = layers.conv2D_layer_bn(pool3, 'conv4_1', num_filters=n_ch_0 * 8, training=training) conv4_2 = layers.conv2D_layer_bn(conv4_1, 'conv4_2', num_filters=n_ch_0 * 8, training=training) upconv3 = layers.deconv2D_layer_bn(conv4_2, name='upconv3', num_filters=n_ch_0, training=training) concat3 = layers.crop_and_concat_layer([upconv3, conv3_2], axis=-1) conv5_1 = layers.conv2D_layer_bn(concat3, 'conv5_1', num_filters=n_ch_0 * 4, training=training) conv5_2 = layers.conv2D_layer_bn(conv5_1, 'conv5_2', num_filters=n_ch_0 * 4, training=training) upconv2 = layers.deconv2D_layer_bn(conv5_2, name='upconv2', num_filters=n_ch_0, training=training) concat2 = layers.crop_and_concat_layer([upconv2, conv2_2], axis=-1) conv6_1 = layers.conv2D_layer_bn(concat2, 'conv6_1', num_filters=n_ch_0 * 2, training=training) conv6_2 = layers.conv2D_layer_bn(conv6_1, 'conv6_2', num_filters=n_ch_0 * 2, training=training) upconv1 = layers.deconv2D_layer_bn(conv6_2, name='upconv1', num_filters=n_ch_0, training=training) concat1 = layers.crop_and_concat_layer([upconv1, conv1_2], axis=-1) conv8_1 = layers.conv2D_layer_bn(concat1, 'conv8_1', num_filters=n_ch_0, training=training) conv8_2 = layers.conv2D_layer(conv8_1, 'conv8_2', num_filters=1, activation=tf.identity) return conv8_2