def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, custom_config: Dict[Text, Any], module_file: Text, serving_model_dir: Text, metadata_path: Text, beam_pipeline_args: List[Text]) -> pipeline.Pipeline: """Implements the handwritten digit classification example using TFX.""" # Store the configuration along with the pipeline run so results can be reproduced pipeline_configuration = FromCustomConfig(custom_config=custom_config) # Brings data into the pipeline. example_gen = ImportExampleGen(input_base=data_root) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Create a filtered dataset - today we only want a model for small digits filter = Filter(examples=example_gen.outputs['examples'], pipeline_configuration=pipeline_configuration. outputs['pipeline_configuration'], splits_to_transform=['train', 'eval'], splits_to_copy=[]) # Create a stratified dataset for evaluation stratified_examples = StratifiedSampler( examples=filter.outputs['filtered_examples'], pipeline_configuration=pipeline_configuration. outputs['pipeline_configuration'], samples_per_key=1200, splits_to_transform=['eval'], splits_to_copy=['train']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=filter.outputs['filtered_examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Uses user-provided Python function that trains a Keras model. trainer = Trainer( module_file=module_file, custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor), custom_config=custom_config, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], train_args=trainer_pb2.TrainArgs(num_steps=5000), eval_args=trainer_pb2.EvalArgs(num_steps=100)).with_id(u'trainer') # Uses TFMA to compute evaluation statistics over features of a model and # performs quality validation of a candidate model. eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='image_class')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.config.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.8}))) ]) ]) # Uses TFMA to compute the evaluation statistics over features of a model. evaluator = Evaluator( examples=stratified_examples.outputs['stratified_examples'], model=trainer.outputs['model'], eval_config=eval_config).with_id(u'evaluator') # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher( model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))).with_id(u'pusher') return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ pipeline_configuration, example_gen, filter, stratified_examples, statistics_gen, schema_gen, example_validator, transform, trainer, evaluator, pusher, ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=beam_pipeline_args)
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text, direct_num_workers: int) -> pipeline.Pipeline: input_data = external_input(examples_path) input_config = example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='train', pattern='train.tfrecord'), example_gen_pb2.Input.Split(name='eval', pattern='eval.tfrecord') ]) example_gen = ImportExampleGen(input=input_data, input_config=input_config) identify_examples = IdentifyExamples( orig_examples=example_gen.outputs['examples'], component_name=u'IdentifyExamples', id_feature_name=u'id') # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen( examples=identify_examples.outputs["identified_examples"]) schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics']) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) synthesize_graph = SynthesizeGraph( identified_examples=identify_examples.outputs['identified_examples'], component_name=u'SynthesizeGraph', similarity_threshold=0.99) transform = Transform( examples=identify_examples.outputs['identified_examples'], schema=schema_gen.outputs['schema'], # TODO(b/169218106): Remove transformed_examples kwargs after bugfix is released. transformed_examples=channel.Channel( type=standard_artifacts.Examples, artifacts=[standard_artifacts.Examples()]), module_file=_transform_module_file) # Augments training data with graph neighbors. graph_augmentation = GraphAugmentation( identified_examples=transform.outputs['transformed_examples'], synthesized_graph=synthesize_graph.outputs['synthesized_graph'], component_name=u'GraphAugmentation', num_neighbors=3) trainer = Trainer( module_file=_trainer_module_file, transformed_examples=graph_augmentation.outputs['augmented_examples'], schema=schema_gen.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000)) model_validator = ModelValidator(examples=example_gen.outputs['examples'], model=trainer.outputs['model']) pusher = Pusher(model=trainer.outputs['model'], model_blessing=model_validator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, identify_examples, statistics_gen, schema_gen, validate_stats, synthesize_graph, transform, graph_augmentation, trainer, model_validator, pusher ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=['--direct_num_workers=%d' % direct_num_workers])
def _create_pipeline( pipeline_name: Text, pipeline_root: Text, query: Text, module_file: Text, beam_pipeline_args: List[Text], ai_platform_training_args: Dict[Text, Text], ai_platform_serving_args: Dict[Text, Text]) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX and Kubeflow Pipelines.""" # Brings data into the pipeline or otherwise joins/converts training data. example_gen = BigQueryExampleGen(query=query) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. infer_schema = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=infer_schema.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], module_file=module_file) # Uses user-provided Python function that implements a model using TF-Learn # to train a model on Google Cloud AI Platform. trainer = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.Executor), module_file=module_file, transformed_examples=transform.outputs['transformed_examples'], schema=infer_schema.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000), custom_config={'ai_platform_training_args': ai_platform_training_args}) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator( examples=example_gen.outputs['examples'], model_exports=trainer.outputs['model'], feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ evaluator_pb2.SingleSlicingSpec( column_for_slicing=['trip_start_hour']) ])) # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator(examples=example_gen.outputs['examples'], model=trainer.outputs['model']) # Checks whether the model passed the validation steps and pushes the model # to Google Cloud AI Platform if check passed. pusher = Pusher( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model=trainer.outputs['model'], model_blessing=model_validator.outputs['blessing'], custom_config={'ai_platform_serving_args': ai_platform_serving_args}) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, model_analyzer, model_validator, pusher ], beam_pipeline_args=beam_pipeline_args, )
def _create_pipeline(): """Implements the chicago taxi pipeline with TFX.""" examples = csv_input(_data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. infer_schema = SchemaGen(statistics=statistics_gen.outputs['statistics']) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=infer_schema.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], module_file=_taxi_module_file) # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer(module_file=_taxi_module_file, examples=transform.outputs['transformed_examples'], schema=infer_schema.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000)) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator( examples=example_gen.outputs['examples'], model_exports=trainer.outputs['model'], feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ evaluator_pb2.SingleSlicingSpec( column_for_slicing=['trip_start_hour']) ])) # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator(examples=example_gen.outputs['examples'], model=trainer.outputs['model']) # This custom component serves as a bridge between pipeline and human model # reviewers to enable review-and-push workflow in model development cycle. It # utilizes Slack API to send message to user-defined Slack channel with model # URI info and wait for go / no-go decision from the same Slack channel: # * To approve the model, users need to reply the thread sent out by the bot # started by SlackComponent with 'lgtm' or 'approve'. # * To reject the model, users need to reply the thread sent out by the bot # started by SlackComponent with 'decline' or 'reject'. slack_validator = SlackComponent( model=trainer.outputs['model'], model_blessing=model_validator.outputs['blessing'], slack_token=_slack_token, slack_channel_id=_slack_channel_id, timeout_sec=3600, ) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher(model=trainer.outputs['model'], model_blessing=slack_validator.outputs['slack_blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=_serving_model_dir))) return pipeline.Pipeline( pipeline_name=_pipeline_name, pipeline_root=_pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, model_analyzer, model_validator, slack_validator, pusher ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( _metadata_db_root), )
'--disk_size_gb=50', ] if __name__ == '__main__': absl.logging.set_verbosity(absl.logging.INFO) components = init_components( data_dir, module_file, ai_platform_training_args=ai_platform_training_args, serving_model_dir=serving_model_dir, # ai_platform_serving_args=ai_platform_serving_args ) p = pipeline.Pipeline(pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, beam_pipeline_args=beam_pipeline_args) # Metadata config. The defaults works work with the installation of # KF Pipelines using Kubeflow. If installing KF Pipelines using the # lightweight deployment option, you may need to override the defaults. metadata_config = kubeflow_dag_runner.get_default_kubeflow_metadata_config( ) # This pipeline automatically injects the Kubeflow TFX image if the # environment variable 'KUBEFLOW_TFX_IMAGE' is defined. Currently, the tfx # cli tool exports the environment variable to pass to the pipelines. tfx_image = os.environ.get( 'KUBEFLOW_TFX_IMAGE', 'gcr.io/oreilly-book/ml-pipelines-tfx-custom:0.21.4')
def create_pipeline( pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, ai_platform_training_args: Dict[Text, Text], ai_platform_serving_args: Dict[Text, Text], enable_tuning: bool, beam_pipeline_args: List[Text], ) -> pipeline.Pipeline: """Implements the penguin pipeline with TFX and Kubeflow Pipeline. Args: pipeline_name: name of the TFX pipeline being created. pipeline_root: root directory of the pipeline. Should be a valid GCS path. data_root: uri of the penguin data. module_file: uri of the module files used in Trainer and Transform components. ai_platform_training_args: Args of CAIP training job. Please refer to https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#Job for detailed description. ai_platform_serving_args: Args of CAIP model deployment. Please refer to https://cloud.google.com/ml-engine/reference/rest/v1/projects.models for detailed description. enable_tuning: If True, the hyperparameter tuning through CloudTuner is enabled. beam_pipeline_args: List of beam pipeline options. Please refer to https://cloud.google.com/dataflow/docs/guides/specifying-exec-params#setting-other-cloud-dataflow-pipeline-options. Returns: A TFX pipeline object. """ # Number of epochs in training. train_steps = data_types.RuntimeParameter( name='train_steps', default=100, ptype=int, ) # Number of epochs in evaluation. eval_steps = data_types.RuntimeParameter( name='eval_steps', default=50, ptype=int, ) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input_base=data_root) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform( examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Tunes the hyperparameters for model training based on user-provided Python # function. Note that once the hyperparameters are tuned, you can drop the # Tuner component from pipeline and feed Trainer with tuned hyperparameters. if enable_tuning: # The Tuner component launches 1 AIP Training job for flock management of # parallel tuning. For example, 2 workers (defined by num_parallel_trials) # in the flock management AIP Training job, each runs a search loop for # trials as shown below. # Tuner component -> CAIP job X -> CloudTunerA -> tuning trials # -> CloudTunerB -> tuning trials # # Distributed training for each trial depends on the Tuner # (kerastuner.BaseTuner) setup in tuner_fn. Currently CloudTuner is single # worker training per trial. DistributingCloudTuner (a subclass of # CloudTuner) launches remote distributed training job per trial. # # E.g., single worker training per trial # ... -> CloudTunerA -> single worker training # -> CloudTunerB -> single worker training # vs distributed training per trial # ... -> DistributingCloudTunerA -> CAIP job Y -> master,worker1,2,3 # -> DistributingCloudTunerB -> CAIP job Z -> master,worker1,2,3 tuner = Tuner( module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, tune_args=tuner_pb2.TuneArgs( # num_parallel_trials=3 means that 3 search loops are # running in parallel. num_parallel_trials=3), custom_config={ # Note that this TUNING_ARGS_KEY will be used to start the CAIP job # for parallel tuning (CAIP job X above). # # num_parallel_trials will be used to fill/overwrite the # workerCount specified by TUNING_ARGS_KEY: # num_parallel_trials = workerCount + 1 (for master) ai_platform_tuner_executor.TUNING_ARGS_KEY: ai_platform_training_args, # This working directory has to be a valid GCS path and will be used # to launch remote training job per trial. ai_platform_tuner_executor.REMOTE_TRIALS_WORKING_DIR_KEY: os.path.join(_pipeline_root, 'trials'), }) # Uses user-provided Python function that trains a model. trainer = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.GenericExecutor), module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], # If Tuner is in the pipeline, Trainer can take Tuner's output # best_hyperparameters artifact as input and utilize it in the user module # code. # # If there isn't Tuner in the pipeline, either use ImporterNode to import # a previous Tuner's output to feed to Trainer, or directly use the tuned # hyperparameters in user module code and set hyperparameters to None # here. # # Example of ImporterNode, # hparams_importer = ImporterNode( # source_uri='path/to/best_hyperparameters.txt', # artifact_type=HyperParameters).with_id('import_hparams') # ... # hyperparameters = hparams_importer.outputs['result'], hyperparameters=(tuner.outputs['best_hyperparameters'] if enable_tuning else None), train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, custom_config={ ai_platform_trainer_executor.TRAINING_ARGS_KEY: ai_platform_training_args }) # Get the latest blessed model for model validation. model_resolver = ResolverNode( resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel( type=ModelBlessing)).with_id('latest_blessed_model_resolver') # Uses TFMA to compute evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='species')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), # Change threshold will be ignored if there is no # baseline model resolved from MLMD (first run). change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10}))) ]) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], eval_config=eval_config) pusher = Pusher( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], custom_config={ ai_platform_pusher_executor.SERVING_ARGS_KEY: ai_platform_serving_args }, ) components = [ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, pusher, ] if enable_tuning: components.append(tuner) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, enable_cache=True, beam_pipeline_args=beam_pipeline_args)
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, training_data_root: Text, inference_data_root: Text, module_file: Text, metadata_path: Text, beam_pipeline_args: List[Text]) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX.""" # Brings training data into the pipeline or otherwise joins/converts # training data. training_example_gen = CsvExampleGen(input_base=training_data_root, instance_name='training_example_gen') # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen( input_data=training_example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=training_example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer( module_file=module_file, transformed_examples=transform.outputs['transformed_examples'], schema=schema_gen.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000)) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver. LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute a evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(signature_name='eval')], slicing_specs=[ tfma.SlicingSpec(), tfma.SlicingSpec(feature_keys=['trip_start_hour']) ], metrics_specs=[ tfma.MetricsSpec( thresholds={ 'accuracy': tfma.config.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10})) }) ]) evaluator = Evaluator( examples=training_example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) # Brings inference data into the pipeline. inference_example_gen = CsvExampleGen( input_base=inference_data_root, output_config=example_gen_pb2.Output( split_config=example_gen_pb2.SplitConfig(splits=[ example_gen_pb2.SplitConfig.Split(name='unlabelled', hash_buckets=100) ])), instance_name='inference_example_gen') # Performs offline batch inference over inference examples. bulk_inferrer = BulkInferrer( examples=inference_example_gen.outputs['examples'], model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], # Empty data_spec.example_splits will result in using all splits. data_spec=bulk_inferrer_pb2.DataSpec(), model_spec=bulk_inferrer_pb2.ModelSpec()) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ training_example_gen, inference_example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, bulk_inferrer ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=beam_pipeline_args)
def create_pipeline( pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, ai_platform_training_args: Dict[Text, Text], pusher_custom_config: Dict[Text, Text], enable_tuning: bool, beam_pipeline_args: Optional[List[Text]] = None) -> pipeline.Pipeline: """Implements the penguin pipeline with TFX and Kubeflow Pipeline. Args: pipeline_name: name of the TFX pipeline being created. pipeline_root: root directory of the pipeline. Should be a valid GCS path. data_root: uri of the penguin data. module_file: uri of the module files used in Trainer and Transform components. ai_platform_training_args: Args of CAIP training job. Please refer to https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#Job for detailed description. pusher_custom_config: Custom configs passed to pusher. enable_tuning: If True, the hyperparameter tuning through CloudTuner is enabled. beam_pipeline_args: Optional list of beam pipeline options. Please refer to https://cloud.google.com/dataflow/docs/guides/specifying-exec-params#setting-other-cloud-dataflow-pipeline-options. When this argument is not provided, the default is to use GCP DataflowRunner with 50GB disk size as specified in this function. If an empty list is passed in, default specified by Beam will be used, which can be found at https://cloud.google.com/dataflow/docs/guides/specifying-exec-params#setting-other-cloud-dataflow-pipeline-options Returns: A TFX pipeline object. """ examples = external_input(data_root) # Beam args to run data processing on DataflowRunner. # # TODO(b/151114974): Remove `disk_size_gb` flag after default is increased. # TODO(b/151116587): Remove `shuffle_mode` flag after default is changed. # TODO(b/156874687): Remove `machine_type` after IP addresses are no longer a # scaling bottleneck. if beam_pipeline_args is None: beam_pipeline_args = [ '--runner=DataflowRunner', '--project=' + _project_id, '--temp_location=' + os.path.join(_output_bucket, 'tmp'), '--region=' + _gcp_region, # Temporary overrides of defaults. '--disk_size_gb=50', '--experiments=shuffle_mode=auto', '--machine_type=e2-standard-8', ] # Number of epochs in training. train_steps = data_types.RuntimeParameter( name='train_steps', default=100, ptype=int, ) # Number of epochs in evaluation. eval_steps = data_types.RuntimeParameter( name='eval_steps', default=50, ptype=int, ) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Update ai_platform_training_args if distributed training was enabled. # Number of worker machines used in distributed training. worker_count = data_types.RuntimeParameter( name='worker_count', default=2, ptype=int, ) # Type of worker machines used in distributed training. worker_type = data_types.RuntimeParameter( name='worker_type', default='standard', ptype=str, ) local_training_args = copy.deepcopy(ai_platform_training_args) if FLAGS.distributed_training: local_training_args.update({ # You can specify the machine types, the number of replicas for workers # and parameter servers. # https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#ScaleTier 'scaleTier': 'CUSTOM', 'masterType': 'large_model', 'workerType': worker_type, 'parameterServerType': 'standard', 'workerCount': worker_count, 'parameterServerCount': 1, }) # Tunes the hyperparameters for model training based on user-provided Python # function. Note that once the hyperparameters are tuned, you can drop the # Tuner component from pipeline and feed Trainer with tuned hyperparameters. if enable_tuning: # The Tuner component launches 1 AIP Training job for flock management. # For example, 3 workers (defined by num_parallel_trials) in the flock # management AIP Training job, each runs Tuner.Executor. # Then, 3 AIP Training Jobs (defined by local_training_args) are invoked # from each worker in the flock management Job for Trial execution. tuner = Tuner( module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, tune_args=tuner_pb2.TuneArgs( # num_parallel_trials=3 means that 3 search loops are # running in parallel. # Each tuner may include a distributed training job which can be # specified in local_training_args above (e.g. 1 PS + 2 workers). num_parallel_trials=3), custom_config={ # Configures Cloud AI Platform-specific configs . For details, see # https://cloud.google.com/ai-platform/training/docs/reference/rest/v1/projects.jobs#traininginput. ai_platform_trainer_executor.TRAINING_ARGS_KEY: local_training_args }) # Uses user-provided Python function that trains a model. trainer = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.GenericExecutor), module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], # If Tuner is in the pipeline, Trainer can take Tuner's output # best_hyperparameters artifact as input and utilize it in the user module # code. # # If there isn't Tuner in the pipeline, either use ImporterNode to import # a previous Tuner's output to feed to Trainer, or directly use the tuned # hyperparameters in user module code and set hyperparameters to None # here. # # Example of ImporterNode, # hparams_importer = ImporterNode( # instance_name='import_hparams', # source_uri='path/to/best_hyperparameters.txt', # artifact_type=HyperParameters) # ... # hyperparameters = hparams_importer.outputs['result'], hyperparameters=(tuner.outputs['best_hyperparameters'] if enable_tuning else None), train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, custom_config={ ai_platform_trainer_executor.TRAINING_ARGS_KEY: local_training_args }) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver. LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute an evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='species')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10}))) ]) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) pusher = Pusher( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], custom_config=pusher_custom_config, ) components = [ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, pusher, ] if enable_tuning: components.append(tuner) return pipeline.Pipeline(pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, enable_cache=True, beam_pipeline_args=beam_pipeline_args)
def create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root_uri: data_types.RuntimeParameter, train_steps: data_types.RuntimeParameter, eval_steps: data_types.RuntimeParameter, enable_tuning: bool, ai_platform_training_args: Dict[Text, Text], ai_platform_serving_args: Dict[Text, Text], beam_pipeline_args: List[Text], enable_cache: Optional[bool] = False) -> pipeline.Pipeline: """Trains and deploys the Keras Covertype Classifier with TFX and Kubeflow Pipeline on Google Cloud. Args: pipeline_name: name of the TFX pipeline being created. pipeline_root: root directory of the pipeline. Should be a valid GCS path. data_root_uri: uri of the dataset. train_steps: runtime parameter for number of model training steps for the Trainer component. eval_steps: runtime parameter for number of model evaluation steps for the Trainer component. enable_tuning: If True, the hyperparameter tuning through CloudTuner is enabled. ai_platform_training_args: Args of CAIP training job. Please refer to https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#Job for detailed description. ai_platform_serving_args: Args of CAIP model deployment. Please refer to https://cloud.google.com/ml-engine/reference/rest/v1/projects.models for detailed description. beam_pipeline_args: Optional list of beam pipeline options. Please refer to https://cloud.google.com/dataflow/docs/guides/specifying-exec-params#setting-other-cloud-dataflow-pipeline-options. When this argument is not provided, the default is to use GCP DataflowRunner with 50GB disk size as specified in this function. If an empty list is passed in, default specified by Beam will be used, which can be found at https://cloud.google.com/dataflow/docs/guides/specifying-exec-params#setting-other-cloud-dataflow-pipeline-options enable_cache: Optional boolean Returns: A TFX pipeline object. """ # Brings data into the pipeline and splits the data into training and eval splits output_config = example_gen_pb2.Output( split_config=example_gen_pb2.SplitConfig(splits=[ example_gen_pb2.SplitConfig.Split(name='train', hash_buckets=4), example_gen_pb2.SplitConfig.Split(name='eval', hash_buckets=1) ])) examplegen = CsvExampleGen(input_base=data_root_uri, output_config=output) # Computes statistics over data for visualization and example validation. statisticsgen = StatisticsGen(examples=examplegen.outputs.examples) # Generates schema based on statistics files. Even though, we use user-provided schema # we still want to generate the schema of the newest data for tracking and comparison schemagen = SchemaGen(statistics=statisticsgen.outputs.statistics) # Import a user-provided schema import_schema = ImporterNode(instance_name='import_user_schema', source_uri=SCHEMA_FOLDER, artifact_type=Schema) # Performs anomaly detection based on statistics and data schema. examplevalidator = ExampleValidator( statistics=statisticsgen.outputs.statistics, schema=import_schema.outputs.result) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=examplegen.outputs.examples, schema=import_schema.outputs.result, module_file=TRANSFORM_MODULE_FILE) # Tunes the hyperparameters for model training based on user-provided Python # function. Note that once the hyperparameters are tuned, you can drop the # Tuner component from pipeline and feed Trainer with tuned hyperparameters. if enable_tuning: # The Tuner component launches 1 AI Platform Training job for flock management. # For example, n_workers (defined by num_parallel_trials) in the flock # management AI Platform Training job, each run Tuner.Executor in parallel. tuner = Tuner( module_file=TRAIN_MODULE_FILE, examples=transform.outputs.transformed_examples, transform_graph=transform.outputs.transform_graph, train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, tune_args=tuner_pb2.TuneArgs( # num_parallel_trials can be configured for distributed training. num_parallel_trials=1), custom_config={ # Configures Cloud AI Platform-specific configs. For details, see # https://cloud.google.com/ai-platform/training/docs/reference/rest/v1/projects.jobs#traininginput. ai_platform_trainer_executor.TRAINING_ARGS_KEY: ai_platform_training_args }) # Trains the model using a user provided trainer function. trainer = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.GenericExecutor), module_file=TRAIN_MODULE_FILE, transformed_examples=transform.outputs.transformed_examples, schema=import_schema.outputs.result, transform_graph=transform.outputs.transform_graph, hyperparameters=(tuner.outputs.best_hyperparameters if enable_tuning else None), train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, custom_config={'ai_platform_training_args': ai_platform_training_args}) # Get the latest blessed model for model validation. resolver = ResolverNode(instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver. LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute a evaluation statistics over features of a model. accuracy_threshold = tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold(lower_bound={'value': 0.5}, upper_bound={'value': 0.99}), ) metrics_specs = tfma.MetricsSpec(metrics=[ tfma.MetricConfig(class_name='SparseCategoricalAccuracy', threshold=accuracy_threshold), tfma.MetricConfig(class_name='ExampleCount') ]) eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='Cover_Type')], metrics_specs=[metrics_specs], slicing_specs=[ tfma.SlicingSpec(), tfma.SlicingSpec(feature_keys=['Wilderness_Area']) ]) evaluator = Evaluator(examples=examplegen.outputs.examples, model=trainer.outputs.model, baseline_model=resolver.outputs.model, eval_config=eval_config) # Validate model can be loaded and queried in sand-boxed environment # mirroring production. serving_config = infra_validator_pb2.ServingSpec( tensorflow_serving=infra_validator_pb2.TensorFlowServing( tags=['latest']), kubernetes=infra_validator_pb2.KubernetesConfig(), ) validation_config = infra_validator_pb2.ValidationSpec( max_loading_time_seconds=60, num_tries=3, ) request_config = infra_validator_pb2.RequestSpec( tensorflow_serving=infra_validator_pb2.TensorFlowServingRequestSpec(), num_examples=3, ) infravalidator = InfraValidator( model=trainer.outputs.model, examples=examplegen.outputs.examples, serving_spec=serving_config, validation_spec=validation_config, request_spec=request_config, ) # Checks whether the model passed the validation steps and pushes the model # to CAIP Prediction if checks are passed. pusher = Pusher(custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model=trainer.outputs.model, model_blessing=evaluator.outputs.blessing, infra_blessing=infravalidator.outputs.blessing, custom_config={ ai_platform_pusher_executor.SERVING_ARGS_KEY: ai_platform_serving_args }) components = [ examplegen, statisticsgen, schemagen, import_schema, examplevalidator, transform, trainer, resolver, evaluator, infravalidator, pusher ] if enable_tuning: components.append(tuner) return pipeline.Pipeline(pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, enable_cache=enable_cache, beam_pipeline_args=beam_pipeline_args)
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str, module_file: str, serving_model_dir: str, metadata_path: str, beam_pipeline_args: List[str]) -> pipeline.Pipeline: """Implements the Bert classication on mrpc dataset pipline with TFX.""" input_config = example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='train', pattern='train/*'), example_gen_pb2.Input.Split(name='eval', pattern='validation/*') ]) # Brings data into the pipline example_gen = CsvExampleGen(input_base=data_root, input_config=input_config) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Uses user-provided Python function that trains a model. trainer = Trainer( module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], # Adjust these steps when training on the full dataset. train_args=trainer_pb2.TrainArgs(num_steps=1), eval_args=trainer_pb2.EvalArgs(num_steps=1)) # Get the latest blessed model for model validation. model_resolver = resolver.Resolver( strategy_class=latest_blessed_model_resolver. LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel( type=ModelBlessing)).with_id('latest_blessed_model_resolver') # Uses TFMA to compute evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='label')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( # Adjust the threshold when training on the # full dataset. lower_bound={'value': 0.5}), # Change threshold will be ignored if there is no # baseline model resolved from MLMD (first run). change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-2}))) ]) ]) evaluator = Evaluator(examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], eval_config=eval_config) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher(model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) components = [ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, pusher, ] return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), enable_cache=True, beam_pipeline_args=beam_pipeline_args, )
def _create_pipeline( pipeline_name: Text, pipeline_root: Text, module_file: Text, ai_platform_training_args: Dict[Text, Text], ai_platform_serving_args: Dict[Text, Text]) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX and Kubeflow Pipelines.""" # The rate at which to sample rows from the Taxi dataset using BigQuery. # The full taxi dataset is > 200M record. In the interest of resource # savings and time, we've set the default for this example to be much smaller. # Feel free to crank it up and process the full dataset! # By default it generates a 0.1% random sample. query_sample_rate = data_types.RuntimeParameter( name='query-sample-rate', ptype=float, default=0.001) # This is the upper bound of FARM_FINGERPRINT in Bigquery (ie the max value of # signed int64). max_int64 = '0x7FFFFFFFFFFFFFFF' # The query that extracts the examples from BigQuery. The Chicago Taxi dataset # used for this example is a public dataset available on Google AI Platform. # https://console.cloud.google.com/marketplace/details/city-of-chicago-public-data/chicago-taxi-trips query = """ SELECT pickup_community_area, fare, EXTRACT(MONTH FROM trip_start_timestamp) AS trip_start_month, EXTRACT(HOUR FROM trip_start_timestamp) AS trip_start_hour, EXTRACT(DAYOFWEEK FROM trip_start_timestamp) AS trip_start_day, UNIX_SECONDS(trip_start_timestamp) AS trip_start_timestamp, pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude, trip_miles, pickup_census_tract, dropoff_census_tract, payment_type, company, trip_seconds, dropoff_community_area, tips FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` WHERE (ABS(FARM_FINGERPRINT(unique_key)) / {max_int64}) < {query_sample_rate}""".format( max_int64=max_int64, query_sample_rate=str(query_sample_rate)) # Beam args to run data processing on DataflowRunner. # TODO(b/151114974): Remove `disk_size_gb` flag after default is increased. # TODO(b/151116587): Remove `shuffle_mode` flag after default is changed. beam_pipeline_args = [ '--runner=DataflowRunner', '--experiments=shuffle_mode=auto', '--project=' + _project_id, '--temp_location=' + os.path.join(_output_bucket, 'tmp'), '--region=' + _gcp_region, '--disk_size_gb=50', ] # Number of epochs in training. train_steps = data_types.RuntimeParameter( name='train-steps', default=10000, ptype=int, ) # Number of epochs in evaluation. eval_steps = data_types.RuntimeParameter( name='eval-steps', default=5000, ptype=int, ) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = BigQueryExampleGen(query=query) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform( examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Update ai_platform_training_args if distributed training was enabled. # Number of worker machines used in distributed training. worker_count = data_types.RuntimeParameter( name='worker-count', default=2, ptype=int, ) # Type of worker machines used in distributed training. worker_type = data_types.RuntimeParameter( name='worker-type', default='standard', ptype=str, ) if FLAGS.distributed_training: ai_platform_training_args.update({ # You can specify the machine types, the number of replicas for workers # and parameter servers. # https://cloud.google.com/ml-engine/reference/rest/v1/projects.jobs#ScaleTier 'scaleTier': 'CUSTOM', 'masterType': 'large_model', 'workerType': worker_type, 'parameterServerType': 'standard', 'workerCount': worker_count, 'parameterServerCount': 1 }) # Uses user-provided Python function that implements a model using TF-Learn # to train a model on Google Cloud AI Platform. trainer = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.Executor), module_file=module_file, transformed_examples=transform.outputs['transformed_examples'], schema=schema_gen.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args={'num_steps': train_steps}, eval_args={'num_steps': eval_steps}, custom_config={ ai_platform_trainer_executor.TRAINING_ARGS_KEY: ai_platform_training_args }) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute a evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(signature_name='eval')], slicing_specs=[ tfma.SlicingSpec(), tfma.SlicingSpec(feature_keys=['trip_start_hour']) ], metrics_specs=[ tfma.MetricsSpec( thresholds={ 'binary_accuracy': tfma.config.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10})) }) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) # Checks whether the model passed the validation steps and pushes the model # to Google Cloud AI Platform if check passed. pusher = Pusher( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], custom_config={ ai_platform_pusher_executor.SERVING_ARGS_KEY: ai_platform_serving_args }) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, pusher ], beam_pipeline_args=beam_pipeline_args, )
def build_pipeline(timestamp: str) -> pipeline.Pipeline: """ Declare pipeline components and assemble into Pipeline. """ qry = src_qry logging.debug(qry) conf['serving_model_dir'] = f"{conf['serving_model_dir']}/beam/OL/{timestamp}" conf['pipeline_root_dir'] = f"{conf['pipeline_root_dir']}/beam/OL/{timestamp}" conf['beam']['metadata_path'] = f"{conf['beam']['metadata_path']}/beam/OL" logging.info("Serving model dir is now %s",conf['serving_model_dir']) example_gen = BigQueryExampleGen(query=qry, custom_config=build_query_seed()) # example_gen = BigQueryExampleGen(query=qry) statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) schema_gen = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False ) example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema'] ) trainer = Trainer( module_file=conf['module_file'], custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor), examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], train_args=trainer_pb2.TrainArgs(), eval_args=trainer_pb2.EvalArgs()) pusher = Pusher( model=trainer.outputs['model'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=conf['serving_model_dir']))) components = [ example_gen, statistics_gen, schema_gen, example_validator, trainer, pusher ] tfx_pipeline = pipeline.Pipeline( pipeline_name=conf['beam']['pipeline_name'], pipeline_root=conf['pipeline_root_dir'], components=components, enable_cache=False, metadata_connection_config=( metadata.sqlite_metadata_connection_config(conf['beam']['metadata_path']) ), beam_pipeline_args=beam_pipeline_args ) return tfx_pipeline
def _create_pipeline( pipeline_name: Text, pipeline_root: Text, query: Text, module_file: Text, serving_model_dir: Text, beam_pipeline_args: List[Text], ai_platform_training_args: Dict[Text, Text], ai_platform_serving_args: Dict[Text, Text]) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX and Kubeflow Pipelines.""" # Brings data into the pipeline or otherwise joins/converts training data. example_gen = BigQueryExampleGen(query=query) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(input_data=example_gen.outputs['examples']) # Generates schema based on statistics files. infer_schema = SchemaGen( stats=statistics_gen.outputs['output'], infer_feature_shape=False) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( stats=statistics_gen.outputs['output'], schema=infer_schema.outputs['output']) # Performs transformations and feature engineering in training and serving. transform = Transform( input_data=example_gen.outputs['examples'], schema=infer_schema.outputs['output'], module_file=module_file) # Uses user-provided Python function that implements a model using TF-Learn # to train a model on Google Cloud AI Platform. try: from tfx.extensions.google_cloud_ai_platform.trainer import executor as ai_platform_trainer_executor # pylint: disable=g-import-not-at-top # Train using a custom executor. This requires TFX >= 0.14. trainer = Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.Executor), module_file=module_file, transformed_examples=transform.outputs['transformed_examples'], schema=infer_schema.outputs['output'], transform_output=transform.outputs['transform_output'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000), custom_config={'ai_platform_training_args': ai_platform_training_args}) except ImportError: # Train using a deprecated flag. trainer = Trainer( module_file=module_file, transformed_examples=transform.outputs['transformed_examples'], schema=infer_schema.outputs['output'], transform_output=transform.outputs['transform_output'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000), custom_config={'cmle_training_args': ai_platform_training_args}) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator( examples=example_gen.outputs['examples'], model_exports=trainer.outputs['output'], feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ evaluator_pb2.SingleSlicingSpec( column_for_slicing=['trip_start_hour']) ])) # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator( examples=example_gen.outputs['examples'], model=trainer.outputs['output']) # Checks whether the model passed the validation steps and pushes the model # to a destination if check passed. try: from tfx.extensions.google_cloud_ai_platform.pusher import executor as ai_platform_pusher_executor # pylint: disable=g-import-not-at-top # Deploy the model on Google Cloud AI Platform. This requires TFX >=0.14. pusher = Pusher( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model_export=trainer.outputs['output'], model_blessing=model_validator.outputs['blessing'], custom_config={'ai_platform_serving_args': ai_platform_serving_args}) except ImportError: # Deploy the model on Google Cloud AI Platform, using a deprecated flag. pusher = Pusher( model_export=trainer.outputs['output'], model_blessing=model_validator.outputs['blessing'], custom_config={'cmle_serving_args': ai_platform_serving_args}, push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, model_analyzer, model_validator, pusher ], additional_pipeline_args={ 'beam_pipeline_args': beam_pipeline_args, }, log_root='/var/tmp/tfx/logs', )
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX.""" examples = external_input(data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input_base=examples) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(input_data=example_gen.outputs.examples) # Generates schema based on statistics files. infer_schema = SchemaGen(stats=statistics_gen.outputs.output, infer_feature_shape=False) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator(stats=statistics_gen.outputs.output, schema=infer_schema.outputs.output) # Performs transformations and feature engineering in training and serving. transform = Transform(input_data=example_gen.outputs.examples, schema=infer_schema.outputs.output, module_file=module_file) # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer( module_file=module_file, transformed_examples=transform.outputs.transformed_examples, schema=infer_schema.outputs.output, transform_output=transform.outputs.transform_output, train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000)) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator( examples=example_gen.outputs.examples, model_exports=trainer.outputs.output, feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ evaluator_pb2.SingleSlicingSpec( column_for_slicing=['trip_start_hour']) ])) # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator(examples=example_gen.outputs.examples, model=trainer.outputs.output) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher(model_export=trainer.outputs.output, model_blessing=model_validator.outputs.blessing, push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, model_analyzer, model_validator, pusher ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path))
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str, module_file: str, module_file_lite: str, serving_model_dir: str, serving_model_dir_lite: str, metadata_path: str, beam_pipeline_args: List[str]) -> pipeline.Pipeline: """Implements the handwritten digit classification example using TFX.""" # Brings data into the pipeline. example_gen = ImportExampleGen(input_base=data_root) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) def _create_trainer(module_file, component_id): return Trainer(module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], train_args=trainer_pb2.TrainArgs(num_steps=5000), eval_args=trainer_pb2.EvalArgs( num_steps=100)).with_id(component_id) # Uses user-provided Python function that trains a Keras model. trainer = _create_trainer(module_file, 'Trainer.mnist') # Trains the same model as the one above, but converts it into a TFLite one. trainer_lite = _create_trainer(module_file_lite, 'Trainer.mnist_lite') # TODO(b/150949276): Add resolver back once it supports two trainers. # Uses TFMA to compute evaluation statistics over features of a model and # performs quality validation of a candidate model. eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='image_class')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.8}))) ]) ]) eval_config_lite = tfma.EvalConfig() eval_config_lite.CopyFrom(eval_config) # Informs the evaluator that the model is a TFLite model. eval_config_lite.model_specs[0].model_type = 'tf_lite' # Uses TFMA to compute the evaluation statistics over features of a model. evaluator = Evaluator(examples=example_gen.outputs['examples'], model=trainer.outputs['model'], eval_config=eval_config).with_id('Evaluator.mnist') # Uses TFMA to compute the evaluation statistics over features of a TFLite # model. evaluator_lite = Evaluator( examples=example_gen.outputs['examples'], model=trainer_lite.outputs['model'], eval_config=eval_config_lite).with_id('Evaluator.mnist_lite') # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher( model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))).with_id('Pusher.mnist') # Checks whether the TFLite model passed the validation steps and pushes the # model to a file destination if check passed. pusher_lite = Pusher( model=trainer_lite.outputs['model'], model_blessing=evaluator_lite.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir_lite))).with_id( 'Pusher.mnist_lite') return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, trainer_lite, evaluator, evaluator_lite, pusher, pusher_lite, ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=beam_pipeline_args)
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text, enable_tuning: bool, beam_pipeline_args: List[Text]) -> pipeline.Pipeline: """Implements the Iris flowers pipeline with TFX.""" examples = external_input(data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Tunes the hyperparameters for model training based on user-provided Python # function. Note that once the hyperparameters are tuned, you can drop the # Tuner component from pipeline and feed Trainer with tuned hyperparameters. if enable_tuning: tuner = Tuner(module_file=module_file, examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=20), eval_args=trainer_pb2.EvalArgs(num_steps=5)) # Uses user-provided Python function that trains a model. trainer = Trainer( module_file=module_file, custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor), examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], # If Tuner is in the pipeline, Trainer can take Tuner's output # best_hyperparameters artifact as input and utilize it in the user module # code. # # If there isn't Tuner in the pipeline, either use ImporterNode to import # a previous Tuner's output to feed to Trainer, or directly use the tuned # hyperparameters in user module code and set hyperparameters to None # here. # # Example of ImporterNode, # hparams_importer = ImporterNode( # instance_name='import_hparams', # source_uri='path/to/best_hyperparameters.txt', # artifact_type=HyperParameters) # ... # hyperparameters = hparams_importer.outputs['result'], hyperparameters=(tuner.outputs['best_hyperparameters'] if enable_tuning else None), train_args=trainer_pb2.TrainArgs(num_steps=100), eval_args=trainer_pb2.EvalArgs(num_steps=5)) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver. LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute an evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='variety')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10}))) ]) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher(model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) components = [ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, pusher, ] if enable_tuning: components.append(tuner) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=beam_pipeline_args)
def create_pipeline( pipeline_name: Text, pipeline_root: Text, data_path: Text, # TODO(step 7): (Optional) Uncomment here to use BigQuery as a data source. # query: Text, preprocessing_fn: Text, trainer_fn: Text, train_args: trainer_pb2.TrainArgs, eval_args: trainer_pb2.EvalArgs, serving_model_dir: Text, metadata_connection_config: Optional[ metadata_store_pb2.ConnectionConfig] = None, beam_pipeline_args: Optional[List[Text]] = None, ai_platform_training_args: Optional[Dict[Text, Text]] = None, ai_platform_serving_args: Optional[Dict[Text, Any]] = None, ) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX.""" components = [] # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=external_input(data_path)) # TODO(step 7): (Optional) Uncomment here to use BigQuery as a data source. # example_gen = BigQueryExampleGen(query=query) components.append(example_gen) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # TODO(step 5): Uncomment here to add StatisticsGen to the pipeline. # components.append(statistics_gen) # Generates schema based on statistics files. infer_schema = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) # TODO(step 5): Uncomment here to add SchemaGen to the pipeline. # components.append(infer_schema) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( # pylint: disable=unused-variable statistics=statistics_gen.outputs['statistics'], schema=infer_schema.outputs['schema']) # TODO(step 5): Uncomment here to add ExampleValidator to the pipeline. # components.append(validate_stats) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], preprocessing_fn=preprocessing_fn) # TODO(step 6): Uncomment here to add Transform to the pipeline. # components.append(transform) # Uses user-provided Python function that implements a model using TF-Learn. trainer_args = { 'trainer_fn': trainer_fn, 'transformed_examples': transform.outputs['transformed_examples'], 'schema': infer_schema.outputs['schema'], 'transform_graph': transform.outputs['transform_graph'], 'train_args': train_args, 'eval_args': eval_args, } if ai_platform_training_args is not None: trainer_args.update({ 'custom_executor_spec': executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.Executor), 'custom_config': { ai_platform_trainer_executor.TRAINING_ARGS_KEY: ai_platform_training_args } }) trainer = Trainer(**trainer_args) # TODO(step 6): Uncomment here to add Trainer to the pipeline. # components.append(trainer) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator( # pylint: disable=unused-variable examples=example_gen.outputs['examples'], model=trainer.outputs['model'], feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ evaluator_pb2.SingleSlicingSpec( column_for_slicing=['trip_start_hour']) ])) # TODO(step 6): Uncomment here to add Evaluator to the pipeline. # components.append(model_analyzer) # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator(examples=example_gen.outputs['examples'], model=trainer.outputs['model']) # TODO(step 6): Uncomment here to add ModelValidator to the pipeline. # components.append(model_validator) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher_args = { 'model': trainer.outputs['model'], 'model_blessing': model_validator.outputs['blessing'], 'push_destination': pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir)), } if ai_platform_serving_args is not None: pusher_args.update({ 'custom_executor_spec': executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), 'custom_config': { ai_platform_pusher_executor.SERVING_ARGS_KEY: ai_platform_serving_args }, }) pusher = Pusher(**pusher_args) # pylint: disable=unused-variable # TODO(step 6): Uncomment here to add Pusher to the pipeline. # components.append(pusher) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=components, enable_cache=True, metadata_connection_config=metadata_connection_config, beam_pipeline_args=beam_pipeline_args, )
def test_pipeline_no_tmp_folder(self): pipeline.Pipeline(pipeline_name='a', pipeline_root='b', log_root='c', components=[_FakeComponent('component_a', {})]) self.assertNotIn('TFX_JSON_EXPORT_PIPELINE_ARGS_PATH', os.environ)
def _create_test_pipeline(pipeline_name: Text, pipeline_root: Text, csv_input_location: Text, taxi_module_file: Text, container_image: Text): """Creates a simple Kubeflow-based Chicago Taxi TFX pipeline for testing. Args: pipeline_name: The name of the pipeline. pipeline_root: The root of the pipeline output. csv_input_location: The location of the input data directory. taxi_module_file: The location of the module file for Transform/Trainer. container_image: The container image to use. Returns: A logical TFX pipeline.Pipeline object. """ examples = dsl_utils.csv_input(csv_input_location) example_gen = CsvExampleGen(input_base=examples) statistics_gen = StatisticsGen(input_data=example_gen.outputs.examples) infer_schema = SchemaGen(stats=statistics_gen.outputs.output) validate_stats = ExampleValidator( # pylint: disable=unused-variable stats=statistics_gen.outputs.output, schema=infer_schema.outputs.output) transform = Transform(input_data=example_gen.outputs.examples, schema=infer_schema.outputs.output, module_file=taxi_module_file) trainer = Trainer( module_file=taxi_module_file, transformed_examples=transform.outputs.transformed_examples, schema=infer_schema.outputs.output, transform_output=transform.outputs.transform_output, train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000)) model_analyzer = Evaluator( # pylint: disable=unused-variable examples=example_gen.outputs.examples, model_exports=trainer.outputs.output, feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ evaluator_pb2.SingleSlicingSpec( column_for_slicing=['trip_start_hour']) ])) model_validator = ModelValidator(examples=example_gen.outputs.examples, model=trainer.outputs.output) pusher = Pusher( # pylint: disable=unused-variable model_export=trainer.outputs.output, model_blessing=model_validator.outputs.blessing, push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=os.path.join(pipeline_root, 'model_serving')))) return tfx_pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, model_analyzer, model_validator, pusher ], log_root='/var/tmp/tfx/logs', additional_pipeline_args={ 'tfx_image': container_image, }, )
def create_test_pipeline(): return pipeline.Pipeline( pipeline_name=_pipeline_name, pipeline_root=_pipeline_root, components=generate_dynamic_exec_components())
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text, direct_num_workers: int) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX.""" examples = external_input(data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. # pylint: disable=line-too-long statistics_gen = StatisticsGen( examples=example_gen.outputs['examples']) # Step 3 # pylint: enable=line-too-long # Generates schema based on statistics files. infer_schema = SchemaGen( # Step 3 statistics=statistics_gen.outputs['statistics'], # Step 3 infer_feature_shape=False) # Step 3 # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( # Step 3 statistics=statistics_gen.outputs['statistics'], # Step 3 schema=infer_schema.outputs['schema']) # Step 3 # Performs transformations and feature engineering in training and serving. # transform = Transform( # Step 4 # examples=example_gen.outputs['examples'], # Step 4 # schema=infer_schema.outputs['schema'], # Step 4 # module_file=module_file) # Step 4 # Uses user-provided Python function that implements a model using TF-Learn. # trainer = Trainer( # Step 5 # module_file=module_file, # Step 5 # transformed_examples=transform.outputs['transformed_examples'], # Step 5 # schema=infer_schema.outputs['schema'], # Step 5 # transform_graph=transform.outputs['transform_graph'], # Step 5 # train_args=trainer_pb2.TrainArgs(num_steps=10000), # Step 5 # eval_args=trainer_pb2.EvalArgs(num_steps=5000)) # Step 5 # Uses TFMA to compute a evaluation statistics over features of a model. # model_analyzer = Evaluator( # Step 6 # examples=example_gen.outputs['examples'], # Step 6 # model=trainer.outputs['model'], # Step 6 # feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ # Step 6 # evaluator_pb2.SingleSlicingSpec( # Step 6 # column_for_slicing=['trip_start_hour']) # Step 6 # ])) # Step 6 # Performs quality validation of a candidate model (compared to a baseline). # model_validator = ModelValidator( # Step 7 # examples=example_gen.outputs['examples'], # Step 7 # model=trainer.outputs['model']) # Step 7 # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. # pusher = Pusher( # Step 7 # model=trainer.outputs['model'], # Step 7 # model_blessing=model_validator.outputs['blessing'], # Step 7 # push_destination=pusher_pb2.PushDestination( # Step 7 # filesystem=pusher_pb2.PushDestination.Filesystem( # Step 7 # base_directory=_serving_model_dir))) # Step 7 return pipeline.Pipeline( pipeline_name=_pipeline_name, pipeline_root=_pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, # Step 3 # transform, # Step 4 # trainer, # Step 5 # model_analyzer, # Step 6 # model_validator, pusher # Step 7 ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=['--direct_num_workers=%d' % direct_num_workers])
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text, direct_num_workers: int) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX.""" examples = external_input(data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform( examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer( module_file=module_file, transformed_examples=transform.outputs['transformed_examples'], schema=schema_gen.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000)) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute a evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(signature_name='eval')], slicing_specs=[ tfma.SlicingSpec(), tfma.SlicingSpec(feature_keys=['trip_start_hour']) ], metrics_specs=[ tfma.MetricsSpec( thresholds={ 'accuracy': tfma.config.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10})) }) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) # Performs infra validation of a candidate model to prevent unservable model # from being pushed. infra_validator = InfraValidator( model=trainer.outputs['model'], examples=example_gen.outputs['examples'], serving_spec=infra_validator_pb2.ServingSpec( tensorflow_serving=infra_validator_pb2.TensorFlowServing( tags=['latest']), local_docker=infra_validator_pb2.LocalDockerConfig()), request_spec=infra_validator_pb2.RequestSpec( tensorflow_serving=infra_validator_pb2.TensorFlowServingRequestSpec()) ) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher( model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], infra_blessing=infra_validator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, infra_validator, pusher, ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), # TODO(b/142684737): The multi-processing API might change. beam_pipeline_args=['--direct_num_workers=%d' % direct_num_workers])
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, metadata_path: Text, ai_platform_training_args: Optional[Dict[Text, Text]], ai_platform_serving_args: Optional[Dict[Text, Text]], beam_pipeline_args: List[Text]) -> pipeline.Pipeline: """Implements the Iris flowers pipeline with TFX.""" # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input_base=data_root) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # TODO(humichael): Handle applying transformation component in Milestone 3. # Uses user-provided Python function that trains a model using TF-Learn. # Num_steps is not provided during evaluation because the scikit-learn model # loads and evaluates the entire test set at once. # TODO(b/159470716): Make schema optional in Trainer. trainer = Trainer( module_file=module_file, custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_trainer_executor.GenericExecutor), examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], train_args=trainer_pb2.TrainArgs(num_steps=2000), eval_args=trainer_pb2.EvalArgs(), custom_config={ ai_platform_trainer_executor.TRAINING_ARGS_KEY: ai_platform_training_args, }) # TODO(humichael): Add Evaluator once it's decided how to proceed with # Milestone 2. pusher = Pusher( custom_executor_spec=executor_spec.ExecutorClassSpec( ai_platform_pusher_executor.Executor), model=trainer.outputs['model'], custom_config={ ai_platform_pusher_executor.SERVING_ARGS_KEY: ai_platform_serving_args, }) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, schema_gen, example_validator, trainer, pusher, ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=beam_pipeline_args, )
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text, worker_parallelism: int) -> pipeline.Pipeline: """Implements the chicago taxi pipeline with TFX.""" examples = external_input(data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input=examples) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer( module_file=module_file, transformed_examples=transform.outputs['transformed_examples'], schema=schema_gen.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000)) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver. LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute a evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(signature_name='eval')], slicing_specs=[ tfma.SlicingSpec(), tfma.SlicingSpec(feature_keys=['trip_start_hour']) ], metrics_specs=[ tfma.MetricsSpec( thresholds={ 'accuracy': tfma.config.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10})) }) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher(model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, pusher ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), # LINT.IfChange beam_pipeline_args=[ # ---------------------------- Beam Args --------------------------- # '--runner=PortableRunner', # Points to the job server started in # setup_beam_on_{flink, spark}.sh '--job_endpoint=localhost:8099', '--environment_type=LOOPBACK', '--sdk_worker_parallelism=%d' % worker_parallelism, '--experiments=use_loopback_process_worker=True', # Setting environment_cache_millis to practically infinity enables # continual reuse of Beam SDK workers, improving performance. '--environment_cache_millis=1000000', # TODO(BEAM-7199): Obviate setting this. '--experiments=pre_optimize=all', # ------------------------ End of Beam Args ------------------------ # # ------------------------------------------------------------------ # # ------------ Flink runner Args (ignored by Spark runner) --------- # '--parallelism=%d' % worker_parallelism, # TODO(b/175810858): Obviate setting this. '--execution_mode_for_batch=BATCH_FORCED', # -------------------- End of Flink runner Args -------------------- # ], # LINT.ThenChange(setup/setup_beam_on_spark.sh, # setup/setup_beam_on_flink.sh) )
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text, beam_pipeline_args: List[Text]) -> pipeline.Pipeline: """Implements the penguin pipeline with TFX.""" # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input_base=data_root) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. schema_gen = SchemaGen(statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. example_validator = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=schema_gen.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform(examples=example_gen.outputs['examples'], schema=schema_gen.outputs['schema'], module_file=module_file) # Uses user-provided Python function that trains a model using TF-Learn. trainer = Trainer( module_file=module_file, custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor), examples=transform.outputs['transformed_examples'], transform_graph=transform.outputs['transform_graph'], schema=schema_gen.outputs['schema'], train_args=trainer_pb2.TrainArgs(num_steps=2000), eval_args=trainer_pb2.EvalArgs(num_steps=5)) # Get the latest blessed model for model validation. model_resolver = ResolverNode( instance_name='latest_blessed_model_resolver', resolver_class=latest_blessed_model_resolver. LatestBlessedModelResolver, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing)) # Uses TFMA to compute an evaluation statistics over features of a model and # perform quality validation of a candidate model (compared to a baseline). eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(label_key='species')], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec(metrics=[ tfma.MetricConfig( class_name='SparseCategoricalAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10}))) ]) ]) evaluator = Evaluator( examples=example_gen.outputs['examples'], model=trainer.outputs['model'], baseline_model=model_resolver.outputs['model'], # Change threshold will be ignored if there is no baseline (first run). eval_config=eval_config) # Performs infra validation of a candidate model to prevent unservable model # from being pushed. This config will launch a model server of the latest # TensorFlow Serving image in a local docker engine. infra_validator = InfraValidator( model=trainer.outputs['model'], examples=example_gen.outputs['examples'], serving_spec=infra_validator_pb2.ServingSpec( tensorflow_serving=infra_validator_pb2.TensorFlowServing( tags=['latest']), local_docker=infra_validator_pb2.LocalDockerConfig()), request_spec=infra_validator_pb2.RequestSpec( tensorflow_serving=infra_validator_pb2. TensorFlowServingRequestSpec())) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher(model=trainer.outputs['model'], model_blessing=evaluator.outputs['blessing'], infra_blessing=infra_validator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, schema_gen, example_validator, transform, trainer, model_resolver, evaluator, infra_validator, pusher, ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), beam_pipeline_args=beam_pipeline_args)
def _create_pipeline(pipeline_name: Text, pipeline_root: Text, data_root: Text, module_file: Text, serving_model_dir: Text, metadata_path: Text) -> pipeline.Pipeline: """Implements the cifar10 pipeline with TFX.""" examples = external_input(data_root) input_split = example_gen_pb2.Input(splits=[ example_gen_pb2.Input.Split(name='train', pattern='train.tfrecord'), example_gen_pb2.Input.Split(name='eval', pattern='test.tfrecord') ]) example_gen = ImportExampleGen(input=examples, input_config=input_split) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(examples=example_gen.outputs['examples']) # Generates schema based on statistics files. infer_schema = SchemaGen( statistics=statistics_gen.outputs['statistics'], infer_feature_shape=True) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( statistics=statistics_gen.outputs['statistics'], schema=infer_schema.outputs['schema']) # Performs transformations and feature engineering in training and serving. transform = Transform( examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], module_file=module_file) # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer( module_file=module_file, examples=transform.outputs['transformed_examples'], schema=infer_schema.outputs['schema'], transform_graph=transform.outputs['transform_graph'], train_args=trainer_pb2.TrainArgs(num_steps=1000), eval_args=trainer_pb2.EvalArgs(num_steps=500)) # Uses TFMA to compute a evaluation statistics over features of a model. evaluator = Evaluator( examples=example_gen.outputs['examples'], model_exports=trainer.outputs['model'], feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec( specs=[evaluator_pb2.SingleSlicingSpec()])) # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator( examples=example_gen.outputs['examples'], model=trainer.outputs['model']) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher( model=trainer.outputs['model'], model_blessing=model_validator.outputs['blessing'], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, evaluator, model_validator, pusher ], enable_cache=True, metadata_connection_config=metadata.sqlite_metadata_connection_config( metadata_path), )
def create_test_pipeline(): """Builds an Iris example pipeline with slight changes.""" pipeline_name = "iris" iris_root = "iris_root" serving_model_dir = os.path.join(iris_root, "serving_model", pipeline_name) tfx_root = "tfx_root" data_path = os.path.join(tfx_root, "data_path") pipeline_root = os.path.join(tfx_root, "pipelines", pipeline_name) example_gen = CsvExampleGen(input=external_input(data_path)) statistics_gen = StatisticsGen(examples=example_gen.outputs["examples"]) importer = ImporterNode(instance_name="my_importer", source_uri="m/y/u/r/i", properties={ "split_names": "['train', 'eval']", }, custom_properties={ "int_custom_property": 42, "str_custom_property": "42", }, artifact_type=standard_artifacts.Examples) schema_gen = SchemaGen(statistics=statistics_gen.outputs["statistics"], infer_feature_shape=True) example_validator = ExampleValidator( statistics=statistics_gen.outputs["statistics"], schema=schema_gen.outputs["schema"]) trainer = Trainer( # Use RuntimeParameter as module_file to test out RuntimeParameter in # compiler. module_file=data_types.RuntimeParameter(name="module_file", default=os.path.join( iris_root, "iris_utils.py"), ptype=str), custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor), examples=example_gen.outputs["examples"], schema=schema_gen.outputs["schema"], train_args=trainer_pb2.TrainArgs(num_steps=2000), # Attaching `TrainerArgs` as platform config is not sensible practice, # but is only for testing purpose. eval_args=trainer_pb2.EvalArgs(num_steps=5)).with_platform_config( config=trainer_pb2.TrainArgs(num_steps=2000)) model_resolver = ResolverNode( instance_name="latest_blessed_model_resolver", resolver_class=latest_blessed_model_resolver. LatestBlessedModelResolver, baseline_model=Channel(type=standard_artifacts.Model, producer_component_id="Trainer"), # Cannot add producer_component_id="Evaluator" for model_blessing as it # raises "producer component should have already been compiled" error. model_blessing=Channel(type=standard_artifacts.ModelBlessing)) eval_config = tfma.EvalConfig( model_specs=[tfma.ModelSpec(signature_name="eval")], slicing_specs=[tfma.SlicingSpec()], metrics_specs=[ tfma.MetricsSpec( thresholds={ "sparse_categorical_accuracy": tfma.config.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={"value": 0.6}), change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={"value": -1e-10})) }) ]) evaluator = Evaluator( examples=example_gen.outputs["examples"], model=trainer.outputs["model"], baseline_model=model_resolver.outputs["baseline_model"], eval_config=eval_config) pusher = Pusher(model=trainer.outputs["model"], model_blessing=evaluator.outputs["blessing"], push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=serving_model_dir))) return pipeline.Pipeline( pipeline_name=pipeline_name, pipeline_root=pipeline_root, components=[ example_gen, statistics_gen, importer, schema_gen, example_validator, trainer, model_resolver, evaluator, pusher, ], enable_cache=False, beam_pipeline_args=["--my_testing_beam_pipeline_args=bar"], # Attaching `TrainerArgs` as platform config is not sensible practice, # but is only for testing purpose. platform_config=trainer_pb2.TrainArgs(num_steps=2000), execution_mode=pipeline.ExecutionMode.ASYNC)
def _create_pipeline(): """Implements the chicago taxi pipeline with TFX.""" examples = csv_input(_data_root) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = CsvExampleGen(input_base=examples) # Computes statistics over data for visualization and example validation. # pylint: disable=line-too-long statistics_gen = StatisticsGen( input_data=example_gen.outputs.examples) # Step 3 # This computes statistics over data for visualization and example validation # statistics_gen = StatisticsGen(input_data=example_gen.outputs.examples) # pylint: enable=line-too-long # Generates schema based on statistics files. infer_schema = SchemaGen(stats=statistics_gen.outputs.output) # Step 3 # Performs anomaly detection based on statistics and data schema. # We now perform anomaly detection based on statistics and data schema validate_stats = ExampleValidator(stats=statistics_gen.outputs.output, schema=infer_schema.outputs.output) # Performs transformations and feature engineering in training and serving. transform = Transform( # Step 4 input_data=example_gen.outputs.examples, # Step 4 schema=infer_schema.outputs.output, # Step 4 module_file=_taxi_module_file) # Step 4 # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer( # Step 5 module_file=_taxi_module_file, # Step 5 transformed_examples=transform.outputs.transformed_examples, # Step 5 schema=infer_schema.outputs.output, # Step 5 transform_output=transform.outputs.transform_output, # Step 5 train_args=trainer_pb2.TrainArgs(num_steps=10000), # Step 5 eval_args=trainer_pb2.EvalArgs(num_steps=5000)) # Step 5 # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator( # Step 6 examples=example_gen.outputs.examples, # Step 6 model_exports=trainer.outputs.output, # Step 6 feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ # Step 6 evaluator_pb2.SingleSlicingSpec( # Step 6 column_for_slicing=['trip_start_hour']) # Step 6 ])) # Step 6 # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator( # Step 7 examples=example_gen.outputs.examples, # Step 7 model=trainer.outputs.output) # Step 7 # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher( # Step 7 model_export=trainer.outputs.output, # Step 7 model_blessing=model_validator.outputs.blessing, # Step 7 push_destination=pusher_pb2.PushDestination( # Step 7 filesystem=pusher_pb2.PushDestination.Filesystem( # Step 7 base_directory=_serving_model_dir))) # Step 7 return pipeline.Pipeline( pipeline_name=_pipeline_name, pipeline_root=_pipeline_root, # This is where we add the components for the above one by one components=[ example_gen, statistics_gen, infer_schema, validate_stats, # statistics_gen, infer_schema, validate_stats, # Step 3 transform, # Step 4 trainer, # Step 5 model_analyzer, # Step 6 model_validator, pusher # Step 7 ], enable_cache=True, metadata_db_root=_metadata_path, additional_pipeline_args={'logger_args': logger_overrides}, )
def testAirflowDagRunner(self, mock_airflow_dag_class, mock_airflow_component_class): mock_airflow_dag_class.return_value = 'DAG' mock_airflow_component_a = mock.Mock() mock_airflow_component_b = mock.Mock() mock_airflow_component_c = mock.Mock() mock_airflow_component_d = mock.Mock() mock_airflow_component_e = mock.Mock() mock_airflow_component_class.side_effect = [ mock_airflow_component_a, mock_airflow_component_b, mock_airflow_component_c, mock_airflow_component_d, mock_airflow_component_e ] airflow_config = { 'schedule_interval': '* * * * *', 'start_date': datetime.datetime(2019, 1, 1) } component_a = _FakeComponent( _FakeComponentSpecA(output=types.Channel(type=_ArtifactTypeA))) component_b = _FakeComponent( _FakeComponentSpecB(a=component_a.outputs['output'], output=types.Channel(type=_ArtifactTypeB))) component_c = _FakeComponent( _FakeComponentSpecC(a=component_a.outputs['output'], b=component_b.outputs['output'], output=types.Channel(type=_ArtifactTypeC))) component_d = _FakeComponent( _FakeComponentSpecD(b=component_b.outputs['output'], c=component_c.outputs['output'], output=types.Channel(type=_ArtifactTypeD))) component_e = _FakeComponent( _FakeComponentSpecE(a=component_a.outputs['output'], b=component_b.outputs['output'], d=component_d.outputs['output'], output=types.Channel(type=_ArtifactTypeE))) test_pipeline = pipeline.Pipeline(pipeline_name='x', pipeline_root='y', metadata_connection_config=None, components=[ component_d, component_c, component_a, component_b, component_e ]) runner = airflow_dag_runner.AirflowDagRunner( airflow_dag_runner.AirflowPipelineConfig( airflow_dag_config=airflow_config)) runner.run(test_pipeline) mock_airflow_component_a.set_upstream.assert_not_called() mock_airflow_component_b.set_upstream.assert_has_calls( [mock.call(mock_airflow_component_a)]) mock_airflow_component_c.set_upstream.assert_has_calls([ mock.call(mock_airflow_component_a), mock.call(mock_airflow_component_b) ], any_order=True) mock_airflow_component_d.set_upstream.assert_has_calls([ mock.call(mock_airflow_component_b), mock.call(mock_airflow_component_c) ], any_order=True) mock_airflow_component_e.set_upstream.assert_has_calls([ mock.call(mock_airflow_component_a), mock.call(mock_airflow_component_b), mock.call(mock_airflow_component_d) ], any_order=True)
def _create_pipeline(): """Implements the chicago taxi pipeline with TFX.""" query = """ SELECT pickup_community_area, fare, EXTRACT(MONTH FROM trip_start_timestamp) AS trip_start_month, EXTRACT(HOUR FROM trip_start_timestamp) AS trip_start_hour, EXTRACT(DAYOFWEEK FROM trip_start_timestamp) AS trip_start_day, UNIX_SECONDS(trip_start_timestamp) AS trip_start_timestamp, pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude, trip_miles, pickup_census_tract, dropoff_census_tract, payment_type, company, trip_seconds, dropoff_community_area, tips FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` WHERE RAND() < {}""".format(_query_sample_rate) # Brings data into the pipeline or otherwise joins/converts training data. example_gen = BigQueryExampleGen(query=query) # Computes statistics over data for visualization and example validation. statistics_gen = StatisticsGen(input_data=example_gen.outputs.examples) # Generates schema based on statistics files. infer_schema = SchemaGen(stats=statistics_gen.outputs.output) # Performs anomaly detection based on statistics and data schema. validate_stats = ExampleValidator( stats=statistics_gen.outputs.output, schema=infer_schema.outputs.output) # Performs transformations and feature engineering in training and serving. transform = Transform( input_data=example_gen.outputs.examples, schema=infer_schema.outputs.output, module_file=_taxi_utils) # Uses user-provided Python function that implements a model using TF-Learn. trainer = Trainer( module_file=_taxi_utils, transformed_examples=transform.outputs.transformed_examples, schema=infer_schema.outputs.output, transform_output=transform.outputs.transform_output, train_args=trainer_pb2.TrainArgs(num_steps=10000), eval_args=trainer_pb2.EvalArgs(num_steps=5000), custom_config={'cmle_training_args': _cmle_training_args}) # Uses TFMA to compute a evaluation statistics over features of a model. model_analyzer = Evaluator( examples=example_gen.outputs.examples, model_exports=trainer.outputs.output, feature_slicing_spec=evaluator_pb2.FeatureSlicingSpec(specs=[ evaluator_pb2.SingleSlicingSpec( column_for_slicing=['trip_start_hour']) ])) # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator( examples=example_gen.outputs.examples, model=trainer.outputs.output) # Checks whether the model passed the validation steps and pushes the model # to a file destination if check passed. pusher = Pusher( model_export=trainer.outputs.output, model_blessing=model_validator.outputs.blessing, custom_config={'cmle_serving_args': _cmle_serving_args}, push_destination=pusher_pb2.PushDestination( filesystem=pusher_pb2.PushDestination.Filesystem( base_directory=_serving_model_dir))) return pipeline.Pipeline( pipeline_name='chicago_taxi_pipeline_kubeflow', pipeline_root=_pipeline_root, components=[ example_gen, statistics_gen, infer_schema, validate_stats, transform, trainer, model_analyzer, model_validator, pusher, ], log_root='/var/tmp/tfx/logs', additional_pipeline_args={ 'beam_pipeline_args': [ '--runner=DataflowRunner', '--experiments=shuffle_mode=auto', '--project=' + _project_id, '--temp_location=' + os.path.join(_output_bucket, 'tmp'), '--region=' + _gcp_region, ], # Optional args: # 'tfx_image': custom docker image to use for components. }, )