コード例 #1
0
def percrank_train(args):
    opts, files = getopt(args, 'c:d:s:j:w:e:r:')
    candgen_model = None
    train_size = 1.0
    parallel = False
    jobs_number = 0
    work_dir = None
    experiment_id = None

    for opt, arg in opts:
        if opt == '-d':
            set_debug_stream(file_stream(arg, mode='w'))
        elif opt == '-s':
            train_size = float(arg)
        elif opt == '-c':
            candgen_model = arg
        elif opt == '-j':
            parallel = True
            jobs_number = int(arg)
        elif opt == '-w':
            work_dir = arg
        elif opt == '-e':
            experiment_id = arg
        elif opt == '-r' and arg:
            rnd.seed(arg)

    if len(files) != 4:
        sys.exit(__doc__)

    fname_rank_config, fname_train_das, fname_train_ttrees, fname_rank_model = files
    log_info('Training perceptron ranker...')

    rank_config = Config(fname_rank_config)
    if candgen_model:
        rank_config['candgen_model'] = candgen_model
    if rank_config.get('nn'):
        from tgen.rank_nn import SimpleNNRanker, EmbNNRanker
        if rank_config['nn'] in ['emb', 'emb_trees', 'emb_prev']:
            ranker_class = EmbNNRanker
        else:
            ranker_class = SimpleNNRanker
    else:
        ranker_class = PerceptronRanker

    log_info('Using %s for ranking' % ranker_class.__name__)

    if not parallel:
        ranker = ranker_class(rank_config)
    else:
        rank_config['jobs_number'] = jobs_number
        if work_dir is None:
            work_dir, _ = os.path.split(fname_rank_config)
        ranker = ParallelRanker(rank_config, work_dir, experiment_id,
                                ranker_class)

    ranker.train(fname_train_das, fname_train_ttrees, data_portion=train_size)

    # avoid the "maximum recursion depth exceeded" error
    sys.setrecursionlimit(100000)
    ranker.save_to_file(fname_rank_model)
コード例 #2
0
def rerank_cl_train(args):

    ap = ArgumentParser(prog=' '.join(sys.argv[0:2]))
    ap.add_argument(
        '-a',
        '--add-to-seq2seq',
        type=str,
        help=
        'Replace trained classifier in an existing seq2seq model (path to file)'
    )
    ap.add_argument('fname_config',
                    type=str,
                    help='Reranking classifier configuration file path')
    ap.add_argument('fname_da_train', type=str, help='Training DAs file path')
    ap.add_argument('fname_trees_train',
                    type=str,
                    help='Training trees/sentences file path')
    ap.add_argument('fname_cl_model',
                    type=str,
                    help='Path for the output trained model')
    args = ap.parse_args(args)

    if args.add_to_seq2seq:
        tgen = Seq2SeqBase.load_from_file(args.add_to_seq2seq)

    config = Config(args.fname_config)
    rerank_cl = RerankingClassifier(config)
    rerank_cl.train(args.fname_da_train, args.fname_trees_train)

    if args.add_to_seq2seq:
        tgen.classif_filter = rerank_cl
        tgen.save_to_file(args.fname_cl_model)
    else:
        rerank_cl.save_to_file(args.fname_cl_model)
コード例 #3
0
ファイル: run_tgen.py プロジェクト: christinataft/tgen
def seq2seq_train(args):

    ap = ArgumentParser(prog=' '.join(sys.argv[0:2]))

    ap.add_argument('-s', '--train-size', type=float,
                    help='Portion of the training data to use (default: 1.0)', default=1.0)
    ap.add_argument('-d', '--debug-logfile', type=str, help='Debug output file name')
    ap.add_argument('-j', '--jobs', type=int, help='Number of parallel jobs to use')
    ap.add_argument('-w', '--work-dir', type=str, help='Main working directory for parallel jobs')
    ap.add_argument('-e', '--experiment-id', type=str,
                    help='Experiment ID for parallel jobs (used as job name prefix)')
    ap.add_argument('-r', '--random-seed', type=str,
                    help='Initial random seed (used as string).')
    ap.add_argument('-c', '--context-file', type=str,
                    help='Input ttree/text file with context utterances')
    ap.add_argument('-v', '--valid-data', type=str,
                    help='Validation data paths (2-3 comma-separated files: DAs, trees/sentences, contexts)')
    ap.add_argument('-l', '--lexic-data', type=str,
                    help='Lexicalization data paths (1-2 comma-separated files: surface forms,' +
                    'training lexic. instructions)')
    ap.add_argument('-t', '--tb-summary-dir', '--tensorboard-summary-dir', '--tensorboard', type=str,
                    help='Directory where Tensorboard summaries are saved during training')

    ap.add_argument('seq2seq_config_file', type=str, help='Seq2Seq generator configuration file')
    ap.add_argument('da_train_file', type=str, help='Input training DAs')
    ap.add_argument('tree_train_file', type=str, help='Input training trees/sentences')
    ap.add_argument('seq2seq_model_file', type=str,
                    help='File name where to save the trained Seq2Seq generator model')

    args = ap.parse_args(args)

    if args.debug_logfile:
        set_debug_stream(file_stream(args.debug_logfile, mode='w'))
    if args.random_seed:
        rnd.seed(args.random_seed)

    log_info('Training sequence-to-sequence generator...')

    config = Config(args.seq2seq_config_file)

    if args.tb_summary_dir:  # override Tensorboard setting
        config['tb_summary_dir'] = args.tb_summary_dir
    if args.jobs:  # parallelize when training
        config['jobs_number'] = args.jobs
        if not args.work_dir:
            work_dir, _ = os.path.split(args.seq2seq_config_file)
        generator = ParallelSeq2SeqTraining(config, args.work_dir or work_dir, args.experiment_id)
    else:  # just a single training instance
        generator = Seq2SeqGen(config)

    generator.train(args.da_train_file, args.tree_train_file,
                    data_portion=args.train_size, context_file=args.context_file,
                    validation_files=args.valid_data, lexic_files=args.lexic_data)

    sys.setrecursionlimit(100000)
    generator.save_to_file(args.seq2seq_model_file)
コード例 #4
0
def treecl_train(args):
    from tgen.classif import TreeClassifier

    opts, files = getopt(args, '')

    if len(files) != 4:
        sys.exit("Invalid arguments.\n" + __doc__)
    fname_config, fname_da_train, fname_trees_train, fname_cl_model = files

    config = Config(fname_config)
    treecl = TreeClassifier(config)

    treecl.train(fname_da_train, fname_trees_train)
    treecl.save_to_file(fname_cl_model)
コード例 #5
0
def candgen_train(args):
    opts, files = getopt(args, 'p:lnc:sd:t:')

    prune_threshold = 1
    parent_lemmas = False
    node_limits = False
    comp_type = None
    comp_limit = None
    comp_slots = False
    tree_classif = False

    for opt, arg in opts:
        if opt == '-p':
            prune_threshold = int(arg)
        elif opt == '-d':
            set_debug_stream(file_stream(arg, mode='w'))
        elif opt == '-l':
            parent_lemmas = True
        elif opt == '-n':
            node_limits = True
        elif opt == '-c':
            comp_type = arg
            if ':' in comp_type:
                comp_type, comp_limit = comp_type.split(':', 1)
                comp_limit = int(comp_limit)
        elif opt == '-t':
            tree_classif = Config(arg)
        elif opt == '-s':
            comp_slots = True

    if len(files) != 3:
        sys.exit("Invalid arguments.\n" + __doc__)
    fname_da_train, fname_ttrees_train, fname_cand_model = files

    log_info('Training candidate generator...')
    candgen = RandomCandidateGenerator({
        'prune_threshold': prune_threshold,
        'parent_lemmas': parent_lemmas,
        'node_limits': node_limits,
        'compatible_dais_type': comp_type,
        'compatible_dais_limit': comp_limit,
        'compatible_slots': comp_slots,
        'tree_classif': tree_classif
    })
    candgen.train(fname_da_train, fname_ttrees_train)
    candgen.save_to_file(fname_cand_model)
コード例 #6
0
def asearch_gen(args):
    """A*search generation"""
    from pytreex.core.document import Document

    opts, files = getopt(args, 'e:d:w:c:s:')
    eval_file = None
    fname_ttrees_out = None
    cfg_file = None
    eval_selector = ''

    for opt, arg in opts:
        if opt == '-e':
            eval_file = arg
        elif opt == '-s':
            eval_selector = arg
        elif opt == '-d':
            set_debug_stream(file_stream(arg, mode='w'))
        elif opt == '-w':
            fname_ttrees_out = arg
        elif opt == '-c':
            cfg_file = arg

    if len(files) != 3:
        sys.exit('Invalid arguments.\n' + __doc__)
    fname_cand_model, fname_rank_model, fname_da_test = files

    log_info('Initializing...')
    candgen = RandomCandidateGenerator.load_from_file(fname_cand_model)
    ranker = PerceptronRanker.load_from_file(fname_rank_model)
    cfg = Config(cfg_file) if cfg_file else {}
    cfg.update({'candgen': candgen, 'ranker': ranker})
    tgen = ASearchPlanner(cfg)

    log_info('Generating...')
    das = read_das(fname_da_test)

    if eval_file is None:
        gen_doc = Document()
    else:
        eval_doc = read_ttrees(eval_file)
        if eval_selector == tgen.selector:
            gen_doc = Document()
        else:
            gen_doc = eval_doc

    # generate and evaluate
    if eval_file is not None:
        # generate + analyze open&close lists
        lists_analyzer = ASearchListsAnalyzer()
        for num, (da, gold_tree) in enumerate(zip(
                das, trees_from_doc(eval_doc, tgen.language, eval_selector)),
                                              start=1):
            log_debug("\n\nTREE No. %03d" % num)
            gen_tree = tgen.generate_tree(da, gen_doc)
            lists_analyzer.append(gold_tree, tgen.open_list, tgen.close_list)
            if gen_tree != gold_tree:
                log_debug("\nDIFFING TREES:\n" +
                          tgen.ranker.diffing_trees_with_scores(
                              da, gold_tree, gen_tree) + "\n")

        log_info('Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %4f' %
                 lists_analyzer.stats())

        # evaluate the generated trees against golden trees
        eval_ttrees = ttrees_from_doc(eval_doc, tgen.language, eval_selector)
        gen_ttrees = ttrees_from_doc(gen_doc, tgen.language, tgen.selector)

        log_info('Evaluating...')
        evaler = Evaluator()
        for eval_bundle, eval_ttree, gen_ttree, da in zip(
                eval_doc.bundles, eval_ttrees, gen_ttrees, das):
            # add some stats about the tree directly into the output file
            add_bundle_text(
                eval_bundle, tgen.language, tgen.selector + 'Xscore',
                "P: %.4f R: %.4f F1: %.4f" %
                p_r_f1_from_counts(*corr_pred_gold(eval_ttree, gen_ttree)))

            # collect overall stats
            evaler.append(eval_ttree, gen_ttree,
                          ranker.score(TreeData.from_ttree(eval_ttree), da),
                          ranker.score(TreeData.from_ttree(gen_ttree), da))
        # print overall stats
        log_info("NODE precision: %.4f, Recall: %.4f, F1: %.4f" %
                 evaler.p_r_f1())
        log_info("DEP  precision: %.4f, Recall: %.4f, F1: %.4f" %
                 evaler.p_r_f1(EvalTypes.DEP))
        log_info("Tree size stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" %
                 evaler.size_stats())
        log_info("Score stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" %
                 evaler.score_stats())
        log_info(
            "Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" %
            evaler.common_substruct_stats())
    # just generate
    else:
        for da in das:
            tgen.generate_tree(da, gen_doc)

    # write output
    if fname_ttrees_out is not None:
        log_info('Writing output...')
        write_ttrees(gen_doc, fname_ttrees_out)