class Worker(object): def __init__(self, wid): trading_fee = .007 time_fee = .0073 history_length = 1 #self.env = gym.make(GAME).unwrapped generator = get_CSV_data(filename="./test_6.csv") self.env = SpreadTrading(spread_coefficients=[1], data_generator=generator, trading_fee=trading_fee, time_fee=time_fee, history_length=history_length) self.wid = wid self.ppo = GLOBAL_PPO def work(self): global GLOBAL_EP, GLOBAL_RUNNING_R, GLOBAL_UPDATE_COUNTER while not COORD.should_stop(): s = self.env.reset() #print("=======") #print(s) #print("========") ep_r = 0 buffer_s, buffer_a, buffer_r = [], [], [] for t in range(EP_LEN): if not ROLLING_EVENT.is_set(): # while global PPO is updating ROLLING_EVENT.wait() # wait until PPO is updated buffer_s, buffer_a, buffer_r = [], [], [ ] # clear history buffer, use new policy to collect data a = self.ppo.choose_action(s) #print("=========") #print("a: ", a) #print("=========") s_, r, done, _ = self.env.step(a) buffer_s.append(s) buffer_a.append(a) buffer_r.append( (r + 8) / 8) # normalize reward, find to be useful s = s_ ep_r += r GLOBAL_UPDATE_COUNTER += 1 # count to minimum batch size, no need to wait other workers if t == EP_LEN - 1 or GLOBAL_UPDATE_COUNTER >= MIN_BATCH_SIZE: v_s_ = self.ppo.get_v(s_) discounted_r = [] # compute discounted reward for r in buffer_r[::-1]: v_s_ = r + GAMMA * v_s_ discounted_r.append(v_s_) discounted_r.reverse() bs, ba, br = np.vstack(buffer_s), np.vstack( buffer_a), np.array(discounted_r)[:, np.newaxis] buffer_s, buffer_a, buffer_r = [], [], [] QUEUE.put(np.hstack((bs, ba, br))) # put data in the queue if GLOBAL_UPDATE_COUNTER >= MIN_BATCH_SIZE: ROLLING_EVENT.clear() # stop collecting data UPDATE_EVENT.set() # globalPPO update if GLOBAL_EP >= EP_MAX: # stop training COORD.request_stop() break # record reward changes, plot later if len(GLOBAL_RUNNING_R) == 0: GLOBAL_RUNNING_R.append(ep_r) else: GLOBAL_RUNNING_R.append(GLOBAL_RUNNING_R[-1] * 0.9 + ep_r * 0.1) GLOBAL_EP += 1 print( '{0:.1f}%'.format(GLOBAL_EP / EP_MAX * 100), '|W%i' % self.wid, '|Ep_r: %.2f' % ep_r, )
threads = [] for worker in workers: # worker threads t = threading.Thread(target=worker.work, args=()) t.start() # training threads.append(t) # add a PPO updating thread threads.append(threading.Thread(target=GLOBAL_PPO.update, )) threads[-1].start() COORD.join(threads) # plot reward change and test plt.plot(np.arange(len(GLOBAL_RUNNING_R)), GLOBAL_RUNNING_R) plt.xlabel('Episode') plt.ylabel('Moving reward') plt.ion() plt.show() #env = gym.make('Pendulum-v0') trading_fee = .007 time_fee = .00724 history_length = 1 generator = get_CSV_data(filename="./test_6.csv") env = SpreadTrading(spread_coefficients=[1], data_generator=generator, trading_fee=trading_fee, time_fee=time_fee, history_length=history_length) while True: s = env.reset() for t in range(3455): env.render() s = env.step(GLOBAL_PPO.choose_action(s))[0]
#Classes and variables generator = CSVStreamer(filename='/Users/tawehbeysolow/Downloads/amazon_order_book_data2.csv') #generator = WavySignal(period_1=25, period_2=50, epsilon=-0.5) memory = Memory(max_size=memory_size) generator = WavySignal(period_1=25, period_2=50, epsilon=-0.5) environment = SpreadTrading(spread_coefficients=[1], data_generator=generator, trading_fee=trading_fee, time_fee=time_fee, history_length=history_length) state_size = len(environment.reset()) def baseline_model(n_actions, info, random=False): if random == True: action = np.random.choice(range(n_actions), p=np.repeat(1/float(n_actions), 3)) action = possible_actions[action] else: if len(info) == 0: action = np.random.choice(range(n_actions), p=np.repeat(1/float(n_actions), 3)) action = possible_actions[action] elif info['action'] == 'sell':
# from generators.tickergenerator import TickerGenerator # Instantiating the environmnent generator = CSVStreamer(filename="data/" + market + "-history.csv") episodes = 7600 episode_length = 200 trading_fee = .2 time_fee = 0 history_length = 5 environment = SpreadTrading(spread_coefficients=[1], data_generator=generator, trading_fee=trading_fee, time_fee=time_fee, history_length=history_length) state = environment.reset() # Instantiating the agent memory_size = 3000 state_size = len(state) gamma = 0.96 epsilon_min = 0.01 batch_size = 64 action_size = len(SpreadTrading._actions) train_interval = 10 learning_rate = 0.001 if not os.path.isfile("./model." + market + ".h5"): agent = DQNAgent(state_size=state_size, action_size=action_size, memory_size=memory_size,
sell = np.array([0, 0, 1]) possible_actions = [hold, buy, sell] #Classes and variables generator = CSVStreamer(filename='/Users/tawehbeysolow/Downloads/amazon_order_book_data2.csv') #generator = WavySignal(period_1=25, period_2=50, epsilon=-0.5) memory = Memory(max_size=memory_size) environment = SpreadTrading(spread_coefficients=[1], data_generator=generator, trading_fee=trading_fee, time_fee=time_fee, history_length=history_length) state_size = len(environment.reset()) def baseline_model(n_actions, info, random=False): if random == True: action = np.random.choice(range(n_actions), p=np.repeat(1/float(n_actions), 3)) action = possible_actions[action] else: if len(info) == 0: action = np.random.choice(range(n_actions), p=np.repeat(1/float(n_actions), 3)) action = possible_actions[action] elif info['action'] == 'sell':
S_ = tf.placeholder(tf.float32, shape=[None, state_size], name='s_') sess = tf.Session() # Create actor and critic. actor = Actor(sess, action_size, LR_A, REPLACE_ITER_A) critic = Critic(sess, state_size, action_size, LR_C, GAMMA, REPLACE_ITER_C, actor.a, actor.a_) actor.add_grad_to_graph(critic.a_grads) M = Memory(MEMORY_CAPACITY, dims=2 * state_size + action_size + 1) sess.run(tf.global_variables_initializer()) for i in range(171): s = environment.reset() #s = OD.DGroup(s) ep_reward = 0 #print("=============") #print("s: ", s) #print("=============") for j in range(3443): a = actor.choose_action(s) #print("=============") #print("s: ", s, " --- ", j) #print("=============") s_, r, done, _ = environment.step(a) #s_ = OD.DGroup(s_) #print("=============") #print("s_: ", s_, " ---- ", j)