def local_conv3d_gradweight_cpu(node): if not isinstance(node.op, AbstractConv3d_gradWeights): return None img, topgrad, shape = node.inputs if ((not isinstance(img.type, TensorType) or not isinstance(topgrad.type, TensorType))): return None if node.op.border_mode not in ['valid', (0, 0, 0)]: return None if node.op.filter_dilation != (1, 1, 1): return None # conv3D expects shape (batch, row, column, time, channel) img = img.dimshuffle(0, 2, 3, 4, 1) topgrad = topgrad.dimshuffle(0, 2, 3, 4, 1) W_shape = (topgrad.shape[4], shape[0], shape[1], shape[2], img.shape[4]) rval = convGrad3D(img, node.op.subsample, W_shape, topgrad) copy_stack_trace(node.outputs[0], rval) rval = rval.dimshuffle(0, 4, 1, 2, 3) # need to flip the kernel if necessary (conv3D does not flip) if node.op.filter_flip: rval = rval[:, :, ::-1, ::-1, ::-1] rval = theano.tensor.patternbroadcast(rval, node.outputs[0].broadcastable) return [rval]
def grad(self, inputs, output_gradients): W, b, d, H, RShape = inputs dCdR, = output_gradients dCdH = conv3D(dCdR, W, T.zeros_like(H[0, 0, 0, 0, :]), d) WShape = W.shape dCdW = convGrad3D(dCdR, d, WShape, H) dCdb = T.sum(dCdR, axis=(0, 1, 2, 3)) # not differentiable, since d affects the output elements dCdd = grad_undefined(self, 2, d) # disconnected, since RShape just determines the output shape dCdRShape = DisconnectedType()() if 'name' in dir(dCdR) and dCdR.name is not None: dCdR_name = dCdR.name else: dCdR_name = 'anon_dCdR' if 'name' in dir(H) and H.name is not None: H_name = H.name else: H_name = 'anon_H' if 'name' in dir(W) and W.name is not None: W_name = W.name else: W_name = 'anon_W' if 'name' in dir(b) and b.name is not None: b_name = b.name else: b_name = 'anon_b' dCdW.name = 'ConvTransp3D_dCdW.H='+H_name+',dCdR='+dCdR_name+',W='+W_name dCdb.name = 'ConvTransp3D_dCdb.H='+H_name+',dCdR='+dCdR_name+',W='+W_name+',b='+b_name dCdH.name = 'ConvTransp3D_dCdH.H=' + H_name + ',dCdR=' + dCdR_name return [dCdW, dCdb, dCdd, dCdH, dCdRShape]
def local_conv2d_gradweight_cpu(node): if not isinstance(node.op, AbstractConv2d_gradWeights): return None img, topgrad, shape = node.inputs if ((not isinstance(img.type, TensorType) or not isinstance(topgrad.type, TensorType))): return None if node.op.border_mode not in ['full', 'valid']: return None if not node.op.filter_flip: # Not tested yet return if node.op.border_mode == 'valid' and \ (node.op.subsample != (1, 1)): # Use the gradient as defined in conv3D, because the implementation # by Conv is slow (about 3x slower than conv3D, and probably 10x # slower than it could be), and incorrect when subsample > 2. # build a "node", that should be equivalent to the one given by # self.make_node, but using convGrad3D instead. shuffled_img = img.dimshuffle(0, 2, 3, 'x', 1) shuffled_topgrad = topgrad.dimshuffle(0, 2, 3, 'x', 1) rval = convGrad3D(V=shuffled_img, d=(node.op.subsample[0], node.op.subsample[1], 1), WShape=(shuffled_topgrad.shape[4], shape[0], shape[1], 1, shuffled_img.shape[4]), dCdH=shuffled_topgrad) copy_stack_trace(node.outputs[0], rval) rval = theano.tensor.addbroadcast(rval, 3) rval = rval.dimshuffle(0, 4, 1, 2) rval = rval[:, :, ::-1, ::-1] rval = theano.tensor.patternbroadcast(rval, node.outputs[0].broadcastable) copy_stack_trace(node.outputs[0], rval) return [rval] dx, dy = node.op.subsample if dx not in (1, 2) or dy not in (1, 2): # Not implemented in the gradient of ConvOp return None if node.op.imshp is None: op_imshp = (None, None, None, None) else: op_imshp = node.op.imshp if node.op.kshp is None: op_kshp = (None, None, None, None) else: op_kshp = node.op.kshp if None in op_imshp or None in op_kshp: if (dx, dy) != (1, 1): # We cannot infer the shapes return None # Determine gradient on kernels assert len(op_imshp) == 4 and len(op_kshp) == 4 outshp = get_conv_output_shape(op_imshp, op_kshp, node.op.border_mode, node.op.subsample)[2:] fulloutshp = get_conv_output_shape(op_imshp, op_kshp, node.op.border_mode, (1, 1))[2:] newimg = img.dimshuffle((1, 0, 2, 3)) newtopgrad = topgrad.dimshuffle((1, 0, 2, 3)) if node.op.border_mode == 'valid': (img, filters) = (newimg, newtopgrad) kshp_logical = fulloutshp kshp_logical_top_aligned = False imshp_logical = None (bsize, nkern) = (op_imshp[1], op_kshp[0]) imshp = (op_imshp[0], op_imshp[2], op_imshp[3]) kshp = outshp elif node.op.border_mode == 'full': (img, filters) = (newtopgrad, newimg) kshp_logical = None kshp_logical_top_aligned = True imshp_logical = (op_imshp[0], fulloutshp[0], fulloutshp[1]) (bsize, nkern) = (op_kshp[0], op_imshp[1]) imshp = (op_imshp[0], outshp[0], outshp[1]) kshp = op_imshp[2:] else: raise NotImplementedError( 'Only [full,valid] modes are currently supported.') # Flip the kernels filters = filters[:, :, ::-1, ::-1] dw = ConvOp(imshp, kshp, nkern, bsize, 1, 1, output_mode='valid', unroll_batch=None, unroll_kern=None, unroll_patch=None, imshp_logical=imshp_logical, kshp_logical=kshp_logical, kshp_logical_top_aligned=kshp_logical_top_aligned, direction_hint='bprop weights') res = dw(img, filters) copy_stack_trace(node.outputs[0], res) if node.op.border_mode == 'valid': res = res.dimshuffle((1, 0, 2, 3)) res = res[:, :, ::-1, ::-1] res = theano.tensor.patternbroadcast(res, node.outputs[0].broadcastable) copy_stack_trace(node.outputs[0], res) return [res]
def __call__(self, t): output = convGrad3D(self.V + t * self.dV, self.d, self.WShape, self.dCdH + t * self.ddCdH) return output