コード例 #1
0
ファイル: test_corr3d.py プロジェクト: adrn/Theano-PyMC
    def test_dtype_upcast(self):
        # Checks dtype upcast for Corr3dMM methods.
        if not theano.config.cxx:
            pytest.skip("Need cxx for this test")

        def rand(shape, dtype="float64"):
            r = np.asarray(np.random.rand(*shape), dtype=dtype)
            return r * 2 - 1

        ops = [
            corr3d.Corr3dMM, corr3d.Corr3dMM_gradWeights,
            corr3d.Corr3dMM_gradInputs
        ]
        a_shapes = [[4, 5, 6, 3, 3], [1, 5, 6, 3, 3], [1, 5, 6, 3, 3]]
        b_shapes = [[7, 5, 3, 2, 2], [1, 5, 3, 1, 1], [7, 1, 3, 1, 1]]
        dtypes = ["float32", "float64"]

        for op, a_shape, b_shape in zip(ops, a_shapes, b_shapes):
            for a_dtype in dtypes:
                for b_dtype in dtypes:
                    c_dtype = theano.scalar.upcast(a_dtype, b_dtype)
                    a_tens = T.tensor5(dtype=a_dtype)
                    b_tens = T.tensor5(dtype=b_dtype)
                    a_tens_val = rand(a_shape, dtype=a_dtype)
                    b_tens_val = rand(b_shape, dtype=b_dtype)

                    c_tens = op()(a_tens, b_tens)
                    f = theano.function([a_tens, b_tens],
                                        c_tens,
                                        mode=self.mode)
                    assert f(a_tens_val, b_tens_val).dtype == c_dtype
コード例 #2
0
ファイル: test_corr3d.py プロジェクト: ChinaQuants/Theano
    def test_dtype_upcast(self):
        """
        Checks dtype upcast for Corr3dMM methods.
        """

        def rand(shape, dtype="float64"):
            r = numpy.asarray(numpy.random.rand(*shape), dtype=dtype)
            return r * 2 - 1

        ops = [corr3d.Corr3dMM, corr3d.Corr3dMM_gradWeights, corr3d.Corr3dMM_gradInputs]
        a_shapes = [[4, 5, 6, 3, 3], [1, 5, 6, 3, 3], [1, 5, 6, 3, 3]]
        b_shapes = [[7, 5, 3, 2, 2], [1, 5, 3, 1, 1], [7, 1, 3, 1, 1]]
        dtypes = ["float32", "float64"]

        for op, a_shape, b_shape in zip(ops, a_shapes, b_shapes):
            for a_dtype in dtypes:
                for b_dtype in dtypes:
                    c_dtype = theano.scalar.upcast(a_dtype, b_dtype)
                    a_tens = T.tensor5(dtype=a_dtype)
                    b_tens = T.tensor5(dtype=b_dtype)
                    a_tens_val = rand(a_shape, dtype=a_dtype)
                    b_tens_val = rand(b_shape, dtype=b_dtype)

                    c_tens = op()(a_tens, b_tens)
                    f = theano.function([a_tens, b_tens], c_tens, mode=self.mode)
                    assert_equals(f(a_tens_val, b_tens_val).dtype, c_dtype)
コード例 #3
0
    def test_dtype_upcast(self):
        """
        Checks dtype upcast for Corr3dMM methods.
        """
        def rand(shape, dtype='float64'):
            r = numpy.asarray(numpy.random.rand(*shape), dtype=dtype)
            return r * 2 - 1

        ops = [corr3d.Corr3dMM, corr3d.Corr3dMM_gradWeights, corr3d.Corr3dMM_gradInputs]
        a_shapes = [[4, 5, 6, 3, 3], [1, 5, 6, 3, 3], [1, 5, 6, 3, 3]]
        b_shapes = [[7, 5, 3, 2, 2], [1, 5, 3, 1, 1], [7, 1, 3, 1, 1]]
        dtypes = ['float32', 'float64']

        for op, a_shape, b_shape in zip(ops, a_shapes, b_shapes):
            for a_dtype in dtypes:
                for b_dtype in dtypes:
                    c_dtype = theano.scalar.upcast(a_dtype, b_dtype)
                    a_tens = T.tensor5(dtype=a_dtype)
                    b_tens = T.tensor5(dtype=b_dtype)
                    a_tens_val = rand(a_shape, dtype=a_dtype)
                    b_tens_val = rand(b_shape, dtype=b_dtype)

                    c_tens = op()(a_tens, b_tens)
                    f = theano.function([a_tens, b_tens], c_tens, mode=self.mode)
                    assert_equals(f(a_tens_val, b_tens_val).dtype, c_dtype)
コード例 #4
0
 def setup_method(self):
     self.input = tt.tensor5("input", dtype=self.dtype)
     self.input.name = "default_V"
     self.filters = tt.tensor5("filters", dtype=self.dtype)
     self.filters.name = "default_filters"
     # This tests can run even when theano.config.blas.ldflags is empty.
     super().setup_method()
コード例 #5
0
ファイル: test_corr3d.py プロジェクト: Thrandis/Theano
    def test_dtype_upcast(self):
        # Checks dtype upcast for Corr3dMM methods.
        if not theano.config.cxx:
            raise SkipTest("Need cxx for this test")

        def rand(shape, dtype='float64'):
            r = np.asarray(np.random.rand(*shape), dtype=dtype)
            return r * 2 - 1

        ops = [corr3d.Corr3dMM, corr3d.Corr3dMM_gradWeights, corr3d.Corr3dMM_gradInputs]
        a_shapes = [[4, 5, 6, 3, 3], [1, 5, 6, 3, 3], [1, 5, 6, 3, 3]]
        b_shapes = [[7, 5, 3, 2, 2], [1, 5, 3, 1, 1], [7, 1, 3, 1, 1]]
        dtypes = ['float32', 'float64']

        for op, a_shape, b_shape in zip(ops, a_shapes, b_shapes):
            for a_dtype in dtypes:
                for b_dtype in dtypes:
                    c_dtype = theano.scalar.upcast(a_dtype, b_dtype)
                    a_tens = T.tensor5(dtype=a_dtype)
                    b_tens = T.tensor5(dtype=b_dtype)
                    a_tens_val = rand(a_shape, dtype=a_dtype)
                    b_tens_val = rand(b_shape, dtype=b_dtype)

                    c_tens = op()(a_tens, b_tens)
                    f = theano.function([a_tens, b_tens], c_tens, mode=self.mode)
                    assert_equals(f(a_tens_val, b_tens_val).dtype, c_dtype)
コード例 #6
0
ファイル: test_corr3d.py プロジェクト: ChinaQuants/Theano
 def setUp(self):
     super(TestCorr3D, self).setUp()
     self.input = T.tensor5("input", dtype=self.dtype)
     self.input.name = "default_V"
     self.filters = T.tensor5("filters", dtype=self.dtype)
     self.filters.name = "default_filters"
     if not conv.imported_scipy_signal and theano.config.cxx == "":
         raise SkipTest("Corr3dMM tests need SciPy or a c++ compiler")
コード例 #7
0
ファイル: test_corr3d.py プロジェクト: zenus/Theano
 def setUp(self):
     super(TestCorr3D, self).setUp()
     self.input = T.tensor5('input', dtype=self.dtype)
     self.input.name = 'default_V'
     self.filters = T.tensor5('filters', dtype=self.dtype)
     self.filters.name = 'default_filters'
     if not conv.imported_scipy_signal and theano.config.cxx == "":
         raise SkipTest("Corr3dMM tests need SciPy or a c++ compiler")
コード例 #8
0
ファイル: test_corr3d.py プロジェクト: adrn/Theano-PyMC
 def setup_method(self):
     self.input = T.tensor5("input", dtype=self.dtype)
     self.input.name = "default_V"
     self.filters = T.tensor5("filters", dtype=self.dtype)
     self.filters.name = "default_filters"
     if not conv.imported_scipy_signal and theano.config.cxx == "":
         pytest.skip("Corr3dMM tests need SciPy or a c++ compiler")
     # This tests can run even when theano.config.blas.ldflags is empty.
     super().setup_method()
コード例 #9
0
ファイル: test_corr3d.py プロジェクト: wgapl/Theano
 def setUp(self):
     super(TestCorr3D, self).setUp()
     self.input = T.tensor5('input', dtype=self.dtype)
     self.input.name = 'default_V'
     self.filters = T.tensor5('filters', dtype=self.dtype)
     self.filters.name = 'default_filters'
     if not conv.imported_scipy_signal and theano.config.cxx == "":
         raise SkipTest("Corr3dMM tests need SciPy or a c++ compiler")
     if not theano.config.blas.ldflags:
         raise SkipTest("Corr3dMM tests need a BLAS")
コード例 #10
0
ファイル: fcnn.py プロジェクト: wusongxiong/vessap
    def build_model_3d(self):
        self.input = T.tensor5('input')
        self.params = ()

        c_input = self.input
        feat_maps = 1
        for ker, actfunc in self.conv_layers:
            conv = Conv_2d_to_3d(input=c_input,
                                 ker_size=ker[-3:],
                                 bank_size=1,
                                 input_maps=ker[1],
                                 output_maps=ker[0],
                                 activation=actfunc)
            c_input = conv.output
            self.params += conv.params
            feat_maps = ker[0]

        c_h_input = T.transpose(c_input, axes=(0, 2, 3, 4, 1))
        c_n_in = feat_maps

        self.classifier = LogisticMultiLabelClassifier(
            T.reshape(c_h_input,
                      (T.prod(c_h_input.shape[:4]), c_h_input.shape[4])),
            c_n_in, self.n_out)
        self.params += self.classifier.params
コード例 #11
0
ファイル: net.py プロジェクト: vrally/Vulcan
    def __setstate__(self, params):
        """Pickle load config."""
        self.__dict__.update(params[0])
        if params[2] is not None and params[3] is not None:
            input_network = Network.load_model(params[2])
            self.input_var = input_network.input_var
            self.input_network = {
                'network': input_network,
                'layer': params[3],
                'get_params': params[4]
            }
        else:
            tensor_size = len(self.input_dimensions)

            if tensor_size == 2:
                self.input_var = T.matrix('input')
            elif tensor_size == 3:
                self.input_var = T.tensor3('input')
            elif tensor_size == 4:
                self.input_var = T.tensor4('input')
            elif tensor_size == 5:
                self.input_var = T.tensor5('input')

        self.y = T.matrix('truth')
        self.__init__(self.__dict__['name'], self.__dict__['input_dimensions'],
                      self.__dict__['input_var'], self.__dict__['y'],
                      self.__dict__['config'], self.__dict__['input_network'],
                      self.__dict__['num_classes'],
                      self.__dict__['activation'],
                      self.__dict__['pred_activation'],
                      self.__dict__['optimizer'],
                      self.__dict__['learning_rate'])
        lasagne.layers.set_all_param_values(self.layers, params[1],
                                            **{self.name: True})
コード例 #12
0
    def __init__(self,
                 generator,
                 obs,
                 num_samples,
                 hdim,
                 L,
                 epsilon,
                 box=(60, 100, 60, 100),
                 init_state=None):
        self.generator = generator
        self.batch_size = obs.shape[0]
        print obs.shape, init_state.shape
        self.img_size = obs.shape[-1]
        self.obs_val = sharedX(
            np.reshape(obs,
                       [1, self.batch_size, 3, self.img_size, self.img_size]))
        self.obs = T.tensor5()
        self.t = T.scalar()
        self.n_sam = num_samples
        self.hdim = hdim
        self.L = L
        self.eps = epsilon
        # mask
        mask = numpy.ones((1, 3, self.img_size, self.img_size))
        mask[:, :, box[0]:box[1], box[2]:box[3]] = 0
        self.mask = sharedX(mask)
        self.build(self.eps, self.L, init_state=init_state)

        print self.img_size, self.n_sam
コード例 #13
0
 def __init__(self,
              generator,
              obs,
              num_samples,
              sigma,
              hdim,
              L,
              epsilon,
              prior,
              init_state=None):
     self.generator = generator
     self.batch_size = obs.shape[0]
     self.obs_val = sharedX(np.reshape(obs,
                                       [1, self.batch_size, 3, 32, 32]))
     #ftensor5 = TensorType('float32', (False,)*5)
     #self.obs = ftensor5()
     self.obs = T.tensor5()
     #pdb.set_trace()
     self.t = T.scalar()
     self.sigma = sigma
     self.n_sam = num_samples
     self.hdim = hdim
     self.L = L
     self.eps = epsilon
     self.prior = prior
     if init_state is None:
         self.build(self.eps, self.L)
     else:
         self.build(self.eps, self.L, init_state=init_state)
コード例 #14
0
def run(fold=0):
    print fold
    I_AM_FOLD = fold
    all_data = load_dataset(folder=paths.preprocessed_validation_data_folder)

    use_patients = all_data
    experiment_name = "final"
    results_folder = os.path.join(paths.results_folder, experiment_name,
                                  "fold%d" % I_AM_FOLD)
    write_images = False
    save_npy = True

    INPUT_PATCH_SIZE = (None, None, None)
    BATCH_SIZE = 2
    n_repeats = 2
    num_classes = 4

    x_sym = T.tensor5()

    net, seg_layer = build_net(x_sym,
                               INPUT_PATCH_SIZE,
                               num_classes,
                               4,
                               16,
                               batch_size=BATCH_SIZE,
                               do_instance_norm=True)
    output_layer = seg_layer

    results_out_folder = os.path.join(results_folder, "pred_val_set")
    if not os.path.isdir(results_out_folder):
        os.mkdir(results_out_folder)

    with open(
            os.path.join(results_folder, "%s_Params.pkl" % (experiment_name)),
            'r') as f:
        params = cPickle.load(f)
        lasagne.layers.set_all_param_values(output_layer, params)

    print "compiling theano functions"
    output = softmax_helper(
        lasagne.layers.get_output(output_layer,
                                  x_sym,
                                  deterministic=False,
                                  batch_norm_update_averages=False,
                                  batch_norm_use_averages=False))
    pred_fn = theano.function([x_sym], output)
    _ = pred_fn(
        np.random.random((BATCH_SIZE, 4, 176, 192, 176)).astype(np.float32))

    run_validation_mirroring(pred_fn,
                             results_out_folder,
                             use_patients,
                             write_images=write_images,
                             hasBrainMask=False,
                             BATCH_SIZE=BATCH_SIZE,
                             num_repeats=n_repeats,
                             preprocess_fn=preprocess,
                             save_npy=save_npy,
                             save_proba=False)
コード例 #15
0
ファイル: build_network.py プロジェクト: tanxuezhi/hur-detect
def build_network(kwargs):
    
    '''Takes a pretrained classification net and adds a few convolutional layers on top of it
    and defines a detection loss function'''
    '''Args:
                      
                      num_convpool: number of conv layer-pool layer pairs
                      delta: smoothing constant to loss function (ie sqrt(x + delta)) 
                            -> if x is 0 gradient is undefined
                      num_filters
                      num_fc_units
                      num_extra_conv: conv layers to add on to each conv layer before max pooling
                      nonlinearity: which nonlinearity to use throughout
                      n_boxes: how many boxes should be predicted at each grid point,
                      nclass: how many classes are we predicting,
                      grid_size: size of the grid that encodes various 
                                locations of image (ie in the YOLO paper they use 7x7 grid)
                      w_init: weight intitialization
                      dropout_p: prob of dropping unit
                      coord_penalty : penalty in YOLO loss function for getting coordinates wrong
                      nonobj_penalty: penalty in YOLO loss for guessing object when there isn't one
                      learning_rate
                      weight_decay
                      momentum
                      load: whether to load weights or not
                      load_path: path for loading weights'''

    if kwargs["im_dim"] == 3:
        input_var = T.tensor5('input_var') 
    else:
        input_var = T.tensor4('input_var')
    target_var = T.tensor4('target_var') #is of shape (grid_size, grid_size,(n_boxes* 5 + nclass)
    
    print "Building model and compiling functions..." 
    
    #make layers
    networks = build_layers(input_var,kwargs)
    
    #load in any pretrained weights
    if kwargs['ae_load_path'] != "None":
        networks['ae'] = load_weights(kwargs['ae_load_path'], networks['ae'])
        
    if kwargs['yolo_load_path'] != "None":
        networks['yolo'] = load_weights(kwargs['yolo_load_path'], networks['yolo'])
    
    #compile theano functions
    fns = make_fns(networks, input_var, target_var, kwargs)
     

    return fns, networks
コード例 #16
0
ファイル: __init__.py プロジェクト: Faruk-Ahmed/nn
def _to_symbolic_var(x):
    if x.ndim == 0:
        return T.scalar()
    elif x.ndim == 1:
        return T.vector()
    elif x.ndim == 2:
        return T.matrix()
    elif x.ndim == 3:
        return T.tensor3()
    elif x.ndim == 4:
        return T.tensor4()
    elif x.ndim == 5:
        return T.tensor5()
    else:
        raise Exception()
コード例 #17
0
def main():
    hf = h5py.File("/hdd/Documents/Data/3D-MNIST/full_dataset_vectors.h5", "r")
    X_train = hf["X_train"][0].reshape(1, 1, 16, 16, 16)
    X_train = np.rollaxis(X_train, 2, 5)
    X_train = np.array(X_train, dtype = np.float32)
    input_var = T.tensor5('inputs')
    network = build_cnn(input_var, 1)
    network_output = lasagne.layers.get_output(network)

    get_rotated = theano.function([input_var], network_output)
    image_result = get_rotated(X_train)
    import amitgroup as ag
    import amitgroup.plot as gr
    gr.images(np.mean(image_result, axis = 4)[0,0])
    return
コード例 #18
0
def _to_symbolic_var(x):
    if x.ndim == 0:
        return T.scalar()
    elif x.ndim == 1:
        return T.vector()
    elif x.ndim == 2:
        return T.matrix()
    elif x.ndim == 3:
        return T.tensor3()
    elif x.ndim == 4:
        return T.tensor4()
    elif x.ndim == 5:
        return T.tensor5()
    else:
        raise Exception()
コード例 #19
0
    def __init__(self, input_shape=(None, 1, 33, 33, 33)):
        self.cubeSize = input_shape[-1]

        # Theano variables
        self.input_var = T.tensor5('input_var')  # input image
        self.target_var = T.ivector('target_var')  # target

        self.logger = logging.getLogger(__name__)

        input_layer = InputLayer(input_shape, self.input_var)
        self.logger.info('The shape of input layer is {}'.format(
            get_output_shape(input_layer)))

        hidden_layer1 = Conv3DLayer(incoming=input_layer,
                                    num_filters=16,
                                    filter_size=(3, 3, 3),
                                    W=HeUniform(gain='relu'),
                                    nonlinearity=rectify)
        self.logger.info('The shape of first hidden layer is {}'.format(
            get_output_shape(hidden_layer1)))

        hidden_layer2 = Conv3DLayer(incoming=hidden_layer1,
                                    num_filters=32,
                                    filter_size=(3, 3, 3),
                                    W=HeUniform(gain='relu'),
                                    nonlinearity=rectify)
        self.logger.info('The shape of second hidden layer is {}'.format(
            get_output_shape(hidden_layer2)))

        hidden_layer3 = Conv3DLayer(incoming=hidden_layer2,
                                    num_filters=2,
                                    filter_size=(1, 1, 1),
                                    W=HeUniform(gain='relu'),
                                    nonlinearity=rectify)
        self.logger.info('The shape of third hidden layer is {}'.format(
            get_output_shape(hidden_layer3)))

        shuffledLayer = DimshuffleLayer(hidden_layer3, (0, 2, 3, 4, 1))
        self.logger.info('The shape of shuffled layer is {}'.format(
            get_output_shape(shuffledLayer)))

        reshapedLayer = ReshapeLayer(shuffledLayer, ([0], -1))
        self.logger.info('The shape of reshaped layer is {}'.format(
            get_output_shape(reshapedLayer)))

        self.output_layer = NonlinearityLayer(reshapedLayer, softmax)
        self.logger.info('The shape of output layer is {}'.format(
            get_output_shape(self.output_layer)))
コード例 #20
0
ファイル: helper_fxns.py プロジェクト: joycezw/climate-dl
def get_net(net_cfg, args):
    l_out, ladder = net_cfg(args)
    if args["mode"] == "2d":
        X = T.tensor4('X')
    elif args["mode"] == "3d":
        X = T.tensor5('X')

    ladder_output = get_output([l_out] + ladder, X)
    net_out = ladder_output[0]
    # squared error loss is between the first two terms
    loss = squared_error(net_out, X).mean()

    ladder_output = ladder_output[1::]
    
    
    if "ladder" in args:
        sys.stderr.write("using ladder connections for conv\n")        
        for i in range(0, len(ladder_output), 2):
            sys.stderr.write("ladder connection between %s and %s\n" % (str(ladder[i].output_shape), str(ladder[i+1].output_shape)) )
            assert ladder[i].output_shape == ladder[i+1].output_shape
            loss += args["ladder"]*squared_error(ladder_output[i], ladder_output[i+1]).mean()
    
    net_out_det = get_output(l_out, X, deterministic=True)
    # this is deterministic + doesn't have the reg params added to the end
    loss_det = squared_error(net_out_det, X).mean()
    params = get_all_params(l_out, trainable=True)
    lr = theano.shared(floatX(args["learning_rate"]))
    if "optim" not in args:
        updates = nesterov_momentum(loss, params, learning_rate=lr, momentum=0.9)
    else:
        if args["optim"] == "rmsprop":
            updates = rmsprop(loss, params, learning_rate=lr)
        elif args["optim"] == "adam":
            updates = adam(loss, params, learning_rate=lr)
    
    train_fn = theano.function([X], [loss, loss_det], updates=updates)
    loss_fn = theano.function([X], loss)
    out_fn = theano.function([X], net_out_det)
    return {
        "train_fn": train_fn,
        "loss_fn": loss_fn,
        "out_fn": out_fn,
        "lr": lr,
        "l_out": l_out
    }
コード例 #21
0
def fSPP(inp, level=3):
    inshape = inp._keras_shape[2:]
    Kernel = [[0] * 3 for i in range(level)]
    Stride = [[0] * 3 for i in range(level)]
    SPPout = T.tensor5()
    for iLevel in range(level):
        Kernel[iLevel] = np.ceil(np.divide(inshape, iLevel + 1,
                                           dtype=float)).astype(int)
        Stride[iLevel] = np.floor(np.divide(inshape, iLevel + 1,
                                            dtype=float)).astype(int)
        if inshape[2] % 3 == 2:
            Kernel[2][2] = Kernel[2][2] + 1
        poolLevel = MaxPooling3D(pool_size=Kernel[iLevel],
                                 strides=Stride[iLevel])(inp)
        if iLevel == 0:
            SPPout = Flatten()(poolLevel)
        else:
            poolFlat = Flatten()(poolLevel)
            SPPout = concatenate([SPPout, poolFlat], axis=1)
    return SPPout
コード例 #22
0
def compile_fn(network, net_config, args):
    """
    Create Training function and validation function
    """
    # Hyper-parameters
    base_lr = float(args.lr[0])
    l2 = float(args.l2[0])

    # Theano variables
    input_var = net_config['input'].input_var
    mask_var = net_config['mask'].input_var
    kspace_var = net_config['kspace_input'].input_var
    target_var = T.tensor5('targets')

    # Objective
    pred = lasagne.layers.get_output(network)
    # complex valued signal has 2 channels, which counts as 1.
    loss_sq = lasagne.objectives.squared_error(target_var, pred).mean() * 2
    if l2:
        l2_penalty = lasagne.regularization.regularize_network_params(network, lasagne.regularization.l2)
        loss = loss_sq + l2_penalty * l2

    update_rule = lasagne.updates.adam
    params = lasagne.layers.get_all_params(network, trainable=True)
    updates = update_rule(loss, params, learning_rate=base_lr)

    print(' Compiling ... ')
    t_start = time.time()
    train_fn = theano.function([input_var, mask_var, kspace_var, target_var],
                               [loss], updates=updates,
                               on_unused_input='ignore')

    val_fn = theano.function([input_var, mask_var, kspace_var, target_var],
                             [loss, pred],
                             on_unused_input='ignore')
    t_end = time.time()
    print(' ... Done, took %.4f s' % (t_end - t_start))

    return train_fn, val_fn
コード例 #23
0
    def __init__(self, modelConfigFile):

        self.logger = logging.getLogger(__name__)

        self.modelConfig = {}
        execfile(modelConfigFile, self.modelConfig)

        self.numOfFMs = self.modelConfig['numOfFMs']
        self.layerCategory = self.modelConfig['layerCategory']
        self.numOfOutputClass = self.modelConfig['numOfOutputClass']
        self.numOfInputChannels = self.modelConfig['numOfInputChannels']

        self.receptiveField = reduce(
            lambda x, y: x + y,
            [int(layer[-1]) - 1 for layer in self.layerCategory], 1)

        self.inputShape = (None, self.numOfInputChannels, self.receptiveField,
                           self.receptiveField, self.receptiveField)

        self.inputVar = T.tensor5('inputVar', dtype=theano.config.floatX)
        self.targetVar = T.ivector('targetVar')

        self.sectorNet = self.buildSectorNet()
コード例 #24
0
import random
import math
import numpy as np
import random
from library import read_text_as_list, read_list_into_array, read_lists_into_arrays
from network_definitions import fc
from training_macros import train_network

# Define parameters, prepare variables
l1_penalty = 0
l2_penalty = 1e-4
list = read_text_as_list(args.image_text_list)
num_modalities = np.size(list[0].split(','))

# Prepare Theano variables for inputs and targets
patch_var = T.tensor5('patch')
loc_var = T.tensor5('loc')
target_var = T.fmatrix('targets')
learning_rate = T.scalar(name='learning_rate')
iter = T.scalar(name='iter')

num_labels = args.num_labels

# Get network
[network,
 shaped] = fc(args.input_patch_radius, args.output_patch_radius, patch_var,
              loc_var, target_var, args.location, num_modalities, num_labels)

# Create a loss expression for training
prediction = lasagne.layers.get_output(network, deterministic=False)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
コード例 #25
0
def run(fold=0):
    print fold
    # =================================================================================================================
    I_AM_FOLD = fold
    np.random.seed(65432)
    lasagne.random.set_rng(np.random.RandomState(98765))
    sys.setrecursionlimit(2000)
    BATCH_SIZE = 2
    INPUT_PATCH_SIZE =(128, 128, 128)
    num_classes=4

    EXPERIMENT_NAME = "final"
    results_dir = os.path.join(paths.results_folder)
    if not os.path.isdir(results_dir):
        os.mkdir(results_dir)
    results_dir = os.path.join(results_dir, EXPERIMENT_NAME)
    if not os.path.isdir(results_dir):
        os.mkdir(results_dir)
    results_dir = os.path.join(results_dir, "fold%d"%I_AM_FOLD)
    if not os.path.isdir(results_dir):
        os.mkdir(results_dir)

    n_epochs = 300
    lr_decay = np.float32(0.985)
    base_lr = np.float32(0.0005)
    n_batches_per_epoch = 100
    n_test_batches = 10
    n_feedbacks_per_epoch = 10.
    num_workers = 6
    workers_seeds = [123, 1234, 12345, 123456, 1234567, 12345678]

    # =================================================================================================================

    all_data = load_dataset()
    keys_sorted = np.sort(all_data.keys())

    crossval_folds = KFold(len(all_data.keys()), n_folds=5, shuffle=True, random_state=123456)

    ctr = 0
    for train_idx, test_idx in crossval_folds:
        print len(train_idx), len(test_idx)
        if ctr == I_AM_FOLD:
            train_keys = [keys_sorted[i] for i in train_idx]
            test_keys = [keys_sorted[i] for i in test_idx]
            break
        ctr += 1

    train_data = {i:all_data[i] for i in train_keys}
    test_data = {i:all_data[i] for i in test_keys}

    data_gen_train = create_data_gen_train(train_data, INPUT_PATCH_SIZE, num_classes, BATCH_SIZE,
                                           contrast_range=(0.75, 1.5), gamma_range = (0.8, 1.5),
                                           num_workers=num_workers, num_cached_per_worker=2,
                                           do_elastic_transform=True, alpha=(0., 1300.), sigma=(10., 13.),
                                           do_rotation=True, a_x=(0., 2*np.pi), a_y=(0., 2*np.pi), a_z=(0., 2*np.pi),
                                           do_scale=True, scale_range=(0.75, 1.25), seeds=workers_seeds)

    data_gen_validation = BatchGenerator3D_random_sampling(test_data, BATCH_SIZE, num_batches=None, seed=False,
                                                           patch_size=INPUT_PATCH_SIZE, convert_labels=True)
    val_transforms = []
    val_transforms.append(GenerateBrainMaskTransform())
    val_transforms.append(BrainMaskAwareStretchZeroOneTransform(clip_range=(-5, 5), per_channel=True))
    val_transforms.append(SegChannelSelectionTransform([0]))
    val_transforms.append(ConvertSegToOnehotTransform(range(4), 0, "seg_onehot"))
    val_transforms.append(DataChannelSelectionTransform([0, 1, 2, 3]))
    data_gen_validation = MultiThreadedAugmenter(data_gen_validation, Compose(val_transforms), 2, 2)

    x_sym = T.tensor5()
    seg_sym = T.matrix()

    net, seg_layer = build_net(x_sym, INPUT_PATCH_SIZE, num_classes, 4, 16, batch_size=BATCH_SIZE,
                               do_instance_norm=True)
    output_layer_for_loss = net

    # add some weight decay
    l2_loss = lasagne.regularization.regularize_network_params(output_layer_for_loss, lasagne.regularization.l2) * 1e-5

    # the distinction between prediction_train and test is important only if we enable dropout (batch norm/inst norm
    # does not use or save moving averages)
    prediction_train = lasagne.layers.get_output(output_layer_for_loss, x_sym, deterministic=False,
                                                 batch_norm_update_averages=False, batch_norm_use_averages=False)

    loss_vec = - soft_dice_per_img_in_batch(prediction_train, seg_sym, BATCH_SIZE)[:, 1:]

    loss = loss_vec.mean()
    loss += l2_loss
    acc_train = T.mean(T.eq(T.argmax(prediction_train, axis=1), seg_sym.argmax(-1)), dtype=theano.config.floatX)

    prediction_test = lasagne.layers.get_output(output_layer_for_loss, x_sym, deterministic=True,
                                                batch_norm_update_averages=False, batch_norm_use_averages=False)
    loss_val = - soft_dice_per_img_in_batch(prediction_test, seg_sym, BATCH_SIZE)[:, 1:]

    loss_val = loss_val.mean()
    loss_val += l2_loss
    acc = T.mean(T.eq(T.argmax(prediction_test, axis=1), seg_sym.argmax(-1)), dtype=theano.config.floatX)

    # learning rate has to be a shared variable because we decrease it with every epoch
    params = lasagne.layers.get_all_params(output_layer_for_loss, trainable=True)
    learning_rate = theano.shared(base_lr)
    updates = lasagne.updates.adam(T.grad(loss, params), params, learning_rate=learning_rate, beta1=0.9, beta2=0.999)

    dc = hard_dice_per_img_in_batch(prediction_test, seg_sym.argmax(1), num_classes, BATCH_SIZE).mean(0)

    train_fn = theano.function([x_sym, seg_sym], [loss, acc_train, loss_vec], updates=updates)
    val_fn = theano.function([x_sym, seg_sym], [loss_val, acc, dc])

    all_val_dice_scores=None

    all_training_losses = []
    all_validation_losses = []
    all_validation_accuracies = []
    all_training_accuracies = []
    val_dice_scores = []
    epoch = 0

    while epoch < n_epochs:
        if epoch == 100:
            data_gen_train = create_data_gen_train(train_data, INPUT_PATCH_SIZE, num_classes, BATCH_SIZE,
                                                   contrast_range=(0.85, 1.25), gamma_range = (0.8, 1.5),
                                                   num_workers=6, num_cached_per_worker=2,
                                                   do_elastic_transform=True, alpha=(0., 1000.), sigma=(10., 13.),
                                                   do_rotation=True, a_x=(0., 2*np.pi), a_y=(-np.pi/8., np.pi/8.),
                                                   a_z=(-np.pi/8., np.pi/8.), do_scale=True, scale_range=(0.85, 1.15),
                                                   seeds=workers_seeds)

        if epoch == 175:
            data_gen_train = create_data_gen_train(train_data, INPUT_PATCH_SIZE, num_classes, BATCH_SIZE,
                                                   contrast_range=(0.9, 1.1), gamma_range = (0.85, 1.3),
                                                   num_workers=6, num_cached_per_worker=2,
                                                   do_elastic_transform=True, alpha=(0., 750.), sigma=(10., 13.),
                                                   do_rotation=True, a_x=(0., 2*np.pi), a_y=(-0.00001, 0.00001),
                                                   a_z=(-0.00001, 0.00001), do_scale=True, scale_range=(0.85, 1.15),
                                                   seeds=workers_seeds)

        epoch_start_time = time.time()
        learning_rate.set_value(np.float32(base_lr* lr_decay**(epoch)))
        print "epoch: ", epoch, " learning rate: ", learning_rate.get_value()
        train_loss = 0
        train_acc_tmp = 0
        train_loss_tmp = 0
        batch_ctr = 0
        for data_dict in data_gen_train:
            data = data_dict["data"].astype(np.float32)
            seg = data_dict["seg_onehot"].astype(np.float32).transpose(0, 2, 3, 4, 1).reshape((-1, num_classes))
            if batch_ctr != 0 and batch_ctr % int(np.floor(n_batches_per_epoch/n_feedbacks_per_epoch)) == 0:
                print "number of batches: ", batch_ctr, "/", n_batches_per_epoch
                print "training_loss since last update: ", \
                    train_loss_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch), " train accuracy: ", \
                    train_acc_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch)
                all_training_losses.append(train_loss_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
                all_training_accuracies.append(train_acc_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
                train_loss_tmp = 0
                train_acc_tmp = 0
                if len(val_dice_scores) > 0:
                    all_val_dice_scores = np.concatenate(val_dice_scores, axis=0).reshape((-1, num_classes))
                try:
                    printLosses(all_training_losses, all_training_accuracies, all_validation_losses,
                                all_validation_accuracies, os.path.join(results_dir, "%s.png" % EXPERIMENT_NAME),
                                n_feedbacks_per_epoch, val_dice_scores=all_val_dice_scores,
                                val_dice_scores_labels=["brain", "1", "2", "3", "4", "5"])
                except:
                    pass
            loss_vec, acc, l = train_fn(data, seg)

            loss = loss_vec.mean()
            train_loss += loss
            train_loss_tmp += loss
            train_acc_tmp += acc
            batch_ctr += 1
            if batch_ctr >= n_batches_per_epoch:
                break
        all_training_losses.append(train_loss_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
        all_training_accuracies.append(train_acc_tmp/np.floor(n_batches_per_epoch/n_feedbacks_per_epoch))
        train_loss /= n_batches_per_epoch
        print "training loss average on epoch: ", train_loss

        val_loss = 0
        accuracies = []
        valid_batch_ctr = 0
        all_dice = []
        for data_dict in data_gen_validation:
            data = data_dict["data"].astype(np.float32)
            seg = data_dict["seg_onehot"].astype(np.float32).transpose(0, 2, 3, 4, 1).reshape((-1, num_classes))
            w = np.zeros(num_classes, dtype=np.float32)
            w[np.unique(seg.argmax(-1))] = 1
            loss, acc, dice = val_fn(data, seg)
            dice[w==0] = 2
            all_dice.append(dice)
            val_loss += loss
            accuracies.append(acc)
            valid_batch_ctr += 1
            if valid_batch_ctr >= n_test_batches:
                break
        all_dice = np.vstack(all_dice)
        dice_means = np.zeros(num_classes)
        for i in range(num_classes):
            dice_means[i] = all_dice[all_dice[:, i]!=2, i].mean()
        val_loss /= n_test_batches
        print "val loss: ", val_loss
        print "val acc: ", np.mean(accuracies), "\n"
        print "val dice: ", dice_means
        print "This epoch took %f sec" % (time.time()-epoch_start_time)
        val_dice_scores.append(dice_means)
        all_validation_losses.append(val_loss)
        all_validation_accuracies.append(np.mean(accuracies))
        all_val_dice_scores = np.concatenate(val_dice_scores, axis=0).reshape((-1, num_classes))
        try:
            printLosses(all_training_losses, all_training_accuracies, all_validation_losses, all_validation_accuracies,
                        os.path.join(results_dir, "%s.png" % EXPERIMENT_NAME), n_feedbacks_per_epoch,
                        val_dice_scores=all_val_dice_scores, val_dice_scores_labels=["brain", "1", "2", "3", "4", "5"])
        except:
            pass
        with open(os.path.join(results_dir, "%s_Params.pkl" % (EXPERIMENT_NAME)), 'w') as f:
            cPickle.dump(lasagne.layers.get_all_param_values(output_layer_for_loss), f)
        with open(os.path.join(results_dir, "%s_allLossesNAccur.pkl"% (EXPERIMENT_NAME)), 'w') as f:
            cPickle.dump([all_training_losses, all_training_accuracies, all_validation_losses,
                          all_validation_accuracies, val_dice_scores], f)
        epoch += 1
    net_input[0,3] = patient_data["adc"]
    net_input[0,4] = patient_data["cbv"]

    print "compiling theano functions"
    # uild_UNet(n_input_channels=1, BATCH_SIZE=None, num_output_classes=2, pad='same', nonlinearity=lasagne.nonlinearities.elu, input_dim=(128, 128), base_n_filters=64, do_dropout=False):
    net = build_UNet3D(5, 1, num_output_classes=5, base_n_filters=16, input_dim=new_shape, pad=0)
    output_layer = net["segmentation"]
    with open(os.path.join(results_folder, "%s_allLossesNAccur_ep%d.pkl" % (experiment_name, epoch)), 'r') as f:
        tmp = cPickle.load(f)

    with open(os.path.join(results_folder, "%s_Params_ep%d.pkl" % (experiment_name, epoch)), 'r') as f:
        params = cPickle.load(f)
        lasagne.layers.set_all_param_values(output_layer, params)

    import theano.tensor as T
    data_sym = T.tensor5()

    output = softmax_helper(lasagne.layers.get_output(output_layer, data_sym, deterministic=False))
    pred_fn = theano.function([data_sym], output)

    print "predicting image"
    cmap = ListedColormap([(0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,1,0), (0.3, 0.5, 1)])

    res = pred_fn(net_input)
    res_img = res.argmax(1)[0]

    seg = patient_data["seg"]
    seg = center_crop_3d_image(seg, output_layer.output_shape[2:])
    patient_data["t1"] = center_crop_3d_image(patient_data["t1"], output_layer.output_shape[2:])
    patient_data["t1km"] = center_crop_3d_image(patient_data["t1km"], output_layer.output_shape[2:])
    patient_data["flair"] = center_crop_3d_image(patient_data["flair"], output_layer.output_shape[2:])
コード例 #27
0
def main(model='mlp', num_epochs=100):
    # Load the dataset
    print("Loading data...")
    # num_per_class = 100
    # print("Using %d per class" % num_per_class)
    print("Using all the training data")

    # Load Data##
    X_train, y_train, X_test, y_test = load_data_3D("/X_train.npy",
                                                    "/Y_train.npy",
                                                    "/X_test.npy",
                                                    "/Y_test.npy",
                                                    "MNIST_3D")
    X_test_all = X_test
    y_test_all = y_test

    X_test = X_test_all[:200]
    y_test = y_test[:200]

    X_train_final = []
    y_train_final = []

    for i in range(10):
        X_train_class = X_train[y_train == i]
        permutate_index = np.arange(X_train_class.shape[0])
        X_train_final.append(X_train_class[permutate_index[:100]])
        y_train_final += [i] * 100

    X_train = np.vstack(X_train_final)
    y_train = np.array(y_train_final, dtype=np.int32)

    # Define Batch Size ##
    batch_size = 100

    # Define nRotation for exhaustive search ##
    nRotation = 8

    # The dimension would be (nRotation * n, w, h)
    input_var = T.tensor5('inputs')
    vanilla_target_var = T.ivector('vanilla_targets')

    # Create neural network model (depending on first command line parameter)

    network, network_for_rotation, weight_decay, network_transformed = \
        build_cnn(input_var, batch_size)

    # saved_weights = np.load("../data/mnist_Chi_dec_100.npy")
    saved_weights = \
        np.load("../data/mnist_CNN_params_drop_out_Chi_2017_hinge.npy")

    affine_matrix_matrix = [np.zeros((batch_size * 10,), dtype=np.float32),
                            np.zeros((batch_size * 10,), dtype=np.float32),
                            np.zeros((batch_size * 10,), dtype=np.float32)]

    network_saved_weights = affine_matrix_matrix + \
        [saved_weights[i] for i in range(saved_weights.shape[0])]

    lasagne.layers.set_all_param_values(network, network_saved_weights)

    # Create a loss expression for training, i.e., a scalar objective we want
    # to minimize (for our multi-class problem, it is the cross-entropy loss):
    # The dimension would be (nRotation * n, 10)

    predictions = lasagne.layers.get_output(network)

    predictions = T.reshape(predictions, (-1, 10, 10))

    predictions_rotation = lasagne.layers.get_output(network_for_rotation,
                                                     deterministic=True)

    predictions_rotation_for_loss = \
        lasagne.layers.get_output(network_for_rotation)

    transformed_images = lasagne.layers.get_output(network_transformed,
                                                   deterministic=True)

    # loss_affine_before = \
    #    lasagne.objectives.squared_error(predictions_rotation.clip(-20, 3), 3) + lasagne.objectives.squared_error(predictions_rotation.clip(3, 20), 20)
    loss_affine_before = lasagne.objectives.squared_error(predictions_rotation.clip(-20, 20), 20)

    # loss_affine_before = -predictions_rotation_for_loss

    loss_affine = loss_affine_before.mean()

    loss = lasagne.objectives.multiclass_hinge_loss(
        predictions_rotation_for_loss, vanilla_target_var)

    loss = loss.mean() + weight_decay

    # This is to use the rotation that the "gradient descent" think will
    # give the highest score for each of the classes
    train_acc_1 = T.mean(T.eq(T.argmax(predictions_rotation_for_loss, axis=1),
                              vanilla_target_var), dtype=theano.config.floatX)

    # This is to use all the scores produces by all the rotations,
    # compare them and get the highest one for each digit
    train_acc_2 = T.mean(T.eq(T.argmax(T.max(predictions, axis=1), axis=1),
                              vanilla_target_var), dtype=theano.config.floatX)

    params = lasagne.layers.get_all_params(network, trainable=True)

    affine_params = params[:3]
    model_params = params[3:]

    updates_affine = lasagne.updates.sgd(loss_affine, affine_params,
                                         learning_rate=1000)
    """
    d_loss_wrt_params = T.grad(loss_affine, affine_params)

    updates_affine = OrderedDict()

    for param, grad in zip(affine_params, d_loss_wrt_params):
        updates_affine[param] = param - 1000 * grad
    """
    updates_model = lasagne.updates.adagrad(loss, model_params,
                                            learning_rate=0.01)

    test_prediction = lasagne.layers.get_output(network, deterministic=True)

    test_prediction = T.reshape(test_prediction, (-1, 10, 10))

    test_prediction_rotation = lasagne.layers.get_output(network_for_rotation,
                                                         deterministic=True)

    test_acc = T.mean(T.eq(T.argmax(T.max(test_prediction, axis=1), axis=1),
                      vanilla_target_var),
                      dtype=theano.config.floatX)

    # Compile a function performing a training step on a mini-batch (by giving
    # the updates dictionary) and returning the corresponding training loss:

    train_model_fn = theano.function([input_var, vanilla_target_var],
                                     [loss, train_acc_1, train_acc_2],
                                     updates=updates_model)

    train_affine_fn = theano.function([input_var],
                                      [loss_affine, loss_affine_before],
                                      updates=updates_affine)

    val_fn = theano.function([input_var, vanilla_target_var], [test_acc, transformed_images])

    Parallel_Search = True
    TRAIN = True
    TEST = True
    # Finally, launch the training loop.
    # We iterate over epochs:
    cached_affine_matrix = np.array(np.zeros((3, X_train.shape[0], 10)),
                                    dtype=np.float32)

    for epoch in range(num_epochs):
        start_time = time.time()
        if (epoch % 20 == 0 or epoch + 1 == num_epochs) and TEST:
            print ("Start Evaluating...")
            test_acc = 0
            test_batches = 0
            affine_test_batches = 0
            # Find best rotation
            if epoch + 1 == num_epochs:
                X_test = X_test_all
                y_test = y_test_all
            cached_affine_matrix_test = \
                np.array(np.zeros((3, X_test.shape[0], 10)), dtype=np.float32)

            for batch in iterate_minibatches(X_test, y_test,
                                             batch_size, shuffle=False):
                inputs, targets, index = batch
                inputs = inputs.reshape(batch_size, 1, 40, 40, 40)
                train_loss_before_all = []
                affine_params_all = []

                if Parallel_Search:
                    searchCandidate = 27
                    eachSearchCandidate = 3
                    eachDegree = 90.0 / eachSearchCandidate
                    for x in range(eachSearchCandidate):
                        x_degree = \
                            np.ones((batch_size * 10,), dtype=np.float32) * eachDegree * x - 45.0
                        for y in range(eachSearchCandidate):
                            y_degree = \
                                np.ones((batch_size * 10,), dtype=np.float32) * eachDegree * y - 45.0
                            for z in range(eachSearchCandidate):
                                z_degree = \
                                    np.ones((batch_size * 10,), dtype=np.float32) * eachDegree * z - 45.0

                                affine_params[0].set_value(x_degree)
                                affine_params[1].set_value(y_degree)
                                affine_params[2].set_value(z_degree)

                                for i in range(10):
                                    weightsOfParams = \
                                        lasagne.layers.\
                                        get_all_param_values(network)
                                    train_loss, train_loss_before = \
                                        train_affine_fn(inputs)
                                    # print("degree x:", weightsOfParams[0][0])
                                    # print("degree y:", weightsOfParams[1][0])
                                    # print("degree z:", weightsOfParams[2][0])
                                    # print("train_loss: ", train_loss_before[0])
                                    # print("total_loss: ", train_loss)
                                affine_params_all.append(
                                    np.array(weightsOfParams[:3]).reshape(
                                        1, 3, batch_size, 10))

                                train_loss_before_all.append(
                                    train_loss_before.reshape(
                                        1, batch_size, 10))

                else:
                    searchCandidate = 200
                    affine_params[0].set_value(np.zeros((batch_size * 10,),
                                                        dtype=np.float32))
                    affine_params[1].set_value(np.zeros((batch_size * 10,),
                                                        dtype=np.float32))
                    affine_params[2].set_value(np.zeros((batch_size * 10,),
                                                        dtype=np.float32))

                    for i in range(searchCandidate):
                        weightsOfParams = lasagne.layers.get_all_param_values(network)
                        train_loss, train_loss_before = train_affine_fn(inputs)
                        affine_params_all.append(np.array(weightsOfParams[:3].reshape(1, 3, batch_size, 10)))
                        train_loss_before_all.append(train_loss_before.reshape(1, batch_size, 10))

                train_loss_before_all = np.vstack(train_loss_before_all)
                affine_params_all = np.vstack(affine_params_all)

                train_loss_before_all_reshape = train_loss_before_all.reshape(searchCandidate, -1)
                affine_params_all_reshape_x = affine_params_all[:, 0].reshape(searchCandidate, -1)
                affine_params_all_reshape_y = affine_params_all[:, 1].reshape(searchCandidate, -1)
                affine_params_all_reshape_z = affine_params_all[:, 2].reshape(searchCandidate, -1)

                # Find the search candidate that gives the lowest loss
                train_arg_min = np.argmin(train_loss_before_all_reshape, axis=0)
                # According to the best search candidate, get the rotations.
                affine_params_all_reshape_x = affine_params_all_reshape_x[train_arg_min, np.arange(train_arg_min.shape[0])]
                affine_params_all_reshape_y = affine_params_all_reshape_y[train_arg_min, np.arange(train_arg_min.shape[0])]
                affine_params_all_reshape_z = affine_params_all_reshape_z[train_arg_min, np.arange(train_arg_min.shape[0])]
                cached_affine_matrix_test[0, index] = affine_params_all_reshape_x.reshape(-1, 10)
                cached_affine_matrix_test[1, index] = affine_params_all_reshape_y.reshape(-1, 10)
                cached_affine_matrix_test[2, index] = affine_params_all_reshape_z.reshape(-1, 10)

                affine_test_batches += 1
                print(affine_test_batches)

            for batch in iterate_minibatches(X_test, y_test, batch_size, shuffle=False):
                inputs, targets, index = batch
                affine_params[0].set_value(cached_affine_matrix_test[0, index].reshape(-1,))
                affine_params[1].set_value(cached_affine_matrix_test[1, index].reshape(-1,))
                affine_params[2].set_value(cached_affine_matrix_test[2, index].reshape(-1,))
                inputs = inputs.reshape(batch_size, 1, 40, 40, 40)
                acc, transformed_image_result = val_fn(inputs, targets)
                test_acc += acc
                test_batches += 1
                if test_batches == 1:
                    np.save("/hdd/Documents/tmp/3d_transformed_image_%d.npy" % epoch, transformed_image_result)
            print("Final results:")
            print("  test accuracy:\t\t{:.2f} %".format(
                test_acc / test_batches * 100))

        if not TRAIN:
            break

        print("Starting training...")
        train_err = 0
        train_acc_sum_1 = 0
        train_acc_sum_2 = 0
        train_batches = 0
        affine_train_batches = 0

        if epoch % 20 == 0:
            weightsOfParams = lasagne.layers.get_all_param_values(network)
            batch_loss = 0
            for batch in iterate_minibatches(X_train, y_train, batch_size, shuffle=False):
                inputs, targets, index = batch
                inputs = inputs.reshape(batch_size, 1, 40, 40, 40)

                train_loss_before_all = []
                affine_params_all = []

                if Parallel_Search:
                    searchCandidate = 27
                    eachSearchCandidate = 3
                    eachDegree = 90.0 / eachSearchCandidate
                    for x in range(eachSearchCandidate):
                        x_degree = np.ones((batch_size * 10,), dtype=np.float32) * eachDegree * x - 45.0
                        for y in range(eachSearchCandidate):
                            y_degree = np.ones((batch_size * 10,), dtype=np.float32) * eachDegree * y - 45.0
                            for z in range(eachSearchCandidate):
                                z_degree = np.ones((batch_size * 10,), dtype=np.float32) * eachDegree * z - 45.0
                                affine_params[0].set_value(x_degree)
                                affine_params[1].set_value(y_degree)
                                affine_params[2].set_value(z_degree)
                                for i in range(10):
                                    weightsOfParams = lasagne.layers.get_all_param_values(network)
                                    train_loss, train_loss_before = train_affine_fn(inputs)
                                affine_params_all.append(np.array(weightsOfParams[:3]).reshape(1, 3, batch_size, 10))
                                train_loss_before_all.append(train_loss_before.reshape(1, batch_size, 10))

                else:
                    searchCandidate = 200
                    affine_params[0].set_value(np.zeros((batch_size * 10,),
                                                        dtype=np.float32))
                    affine_params[1].set_value(np.zeros((batch_size * 10,),
                                                        dtype=np.float32))
                    affine_params[2].set_value(np.zeros((batch_size * 10,),
                                                        dtype=np.float32))
                    for i in range(searchCandidate):
                        weightsOfParams = lasagne.layers.get_all_param_values(network)
                        train_loss, train_loss_before = train_affine_fn(inputs)
                        affine_params_all.append(np.array(weightsOfParams[:3].reshape(1, 3, batch_size, 10)))
                        train_loss_before_all.append(train_loss_before.reshape(1, batch_size, 10))

                train_loss_before_all = np.vstack(train_loss_before_all)
                affine_params_all = np.vstack(affine_params_all)

                train_loss_before_all_reshape = train_loss_before_all.reshape(searchCandidate, -1)
                affine_params_all_reshape_x = affine_params_all[:, 0].reshape(searchCandidate, -1)
                affine_params_all_reshape_y = affine_params_all[:, 1].reshape(searchCandidate, -1)
                affine_params_all_reshape_z = affine_params_all[:, 2].reshape(searchCandidate, -1)

                # Find the search candidate that gives the lowest loss
                train_arg_min = np.argmin(train_loss_before_all_reshape, axis=0)
                # According to the best search candidate, get the rotations.
                affine_params_all_reshape_x = affine_params_all_reshape_x[train_arg_min, np.arange(train_arg_min.shape[0])]
                affine_params_all_reshape_y = affine_params_all_reshape_y[train_arg_min, np.arange(train_arg_min.shape[0])]
                affine_params_all_reshape_z = affine_params_all_reshape_z[train_arg_min, np.arange(train_arg_min.shape[0])]

                cached_affine_matrix[0, index] = affine_params_all_reshape_x.reshape(-1, 10)
                cached_affine_matrix[1, index] = affine_params_all_reshape_y.reshape(-1, 10)
                cached_affine_matrix[2, index] = affine_params_all_reshape_z.reshape(-1, 10)

                affine_train_batches += 1
                batch_loss += np.mean(train_loss_before_all)
                print(affine_train_batches)
            print(batch_loss / affine_train_batches)
            print (time.time() - start_time)

        if 1:
            for batch in iterate_minibatches(X_train, y_train, batch_size, shuffle=True):
                inputs, targets, index = batch
                affine_params[0].set_value(cached_affine_matrix[0, index].reshape(-1,))
                affine_params[1].set_value(cached_affine_matrix[1, index].reshape(-1,))
                affine_params[2].set_value(cached_affine_matrix[2, index].reshape(-1,))

                inputs = inputs.reshape(batch_size, 1, 40, 40, 40)
                train_loss_value, train_acc_value_1, train_acc_value_2 = train_model_fn(inputs, targets)
                train_err += train_loss_value
                train_acc_sum_1 += train_acc_value_1
                train_acc_sum_2 += train_acc_value_2
                train_batches += 1
        # Then we print the results for this epoch:
        print("Epoch {} of {} took {:.3f}s".format(
            epoch + 1, num_epochs, time.time() - start_time))
        print("  training loss:\t\t{:.6f}".format(train_err / train_batches))
        print("  training acc 1:\t\t{:.6f}".format(train_acc_sum_1 / train_batches))
        print("  training acc 2:\t\t{:.6f}".format(train_acc_sum_2 / train_batches))

        if epoch % 21 == 0:
            weightsOfParams = lasagne.layers.get_all_param_values(network)
            np.save("../data/mnist_CNN_params_drop_out_Chi_2017_ROT_hinge_2000_em_new_batch_run_epoch_%d_3d_find_rotation.npy" % epoch, weightsOfParams)
コード例 #28
0
    def __init__(self, configFile):

        self.logger = logging.getLogger(__name__)
        self.configInfo = {}
        execfile(configFile, self.configInfo)

        assert self.configInfo['networkType'] == 'dilated3DNet'
        self.networkType = 'dilated3DNet'

        self.outputFolder = self.configInfo['outputFolder']

        # ----------------------------------------------------------------------------------------
        # For build Dilated3DNet.
        self.preTrainedWeights = self.configInfo['preTrainedWeights']

        # For displaying the output shape change process through the network.
        self.modals = self.configInfo['modals']
        self.inputChannels = len(self.modals)
        self.trainSampleSize = self.configInfo['trainSampleSize']
        self.kernelShapeList = self.configInfo['kernelShapeList']
        self.kernelNumList = self.configInfo['kernelNumList']
        self.dilatedFactorList = self.configInfo['dilatedFactorList']
        self.numOfClasses = self.configInfo['numOfClasses']
        self.dropoutRates = self.configInfo['dropoutRates']

        assert len(self.kernelShapeList) == len(self.kernelNumList)
        assert len(self.kernelShapeList) == len(self.dilatedFactorList)
        assert self.numOfClasses == self.kernelNumList[-1]

        self.inputShape = (None, 
                           self.inputChannels,
                           None,
                           None,
                           None)

        self.inputVar = T.tensor5('inputVar', dtype = theano.config.floatX)
        self.targetVar = T.tensor4('targetVar', dtype = 'int32')
        self.receptiveField = 'Only after building the dilated3DNet, can we get the receptive filed'
        self.outputLayer = self.buildDilated3DNet()
        self.restoreWeights()

        # ----------------------------------------------------------------------------------------
        # For comlile train function.
        # We let the learning can be learnt
        self.weightsFolder = self.configInfo['weightsFolder']
        self.learningRate = theano.shared(np.array(self.configInfo['learningRate'], 
                                                   dtype = theano.config.floatX))
        self.learningRateDecay = np.array(self.configInfo['learningRateDecay'], 
                                                   dtype = theano.config.floatX)
        self.weightDecay = self.configInfo['weightDecay']

        self.optimizerDict = {'rmsprop':rmsprop,
                              'momentum':momentum}

        self.optimizer = self.optimizerDict[self.configInfo['optimizer']]

        self.trainFunction = self.complieTrainFunction()


        # ----------------------------------------------------------------------------------------
        # For compile val function
        self.valSampleSize = self.configInfo['valSampleSize']
        self.valFunction = self.compileValFunction()

        # ----------------------------------------------------------------------------------------
        # For compile test function
        self.testSampleSize = self.configInfo['testSampleSize']
        self.testFunction = self.compileTestFunction()
コード例 #29
0
ファイル: train_loop.py プロジェクト: joycezw/climate-dl
def get_net(net_cfg, args):

    # encoder, classification, decoder = net_cfg(...)
    l_out_for_classifier, l_out_for_decimator, l_out_for_decoder = net_cfg(
        args)

    if args["dim"] == "2d":
        X = T.tensor4('X')
        Y = T.tensor4('Y')
    elif args["dim"] == "3d":
        X = T.tensor5('X')
        Y = T.tensor5('Y')

    net_out_for_classifier = get_output(l_out_for_classifier,
                                        X)  # returns the sigmoid masks
    net_out_for_decimator = get_output(l_out_for_decimator, Y)
    net_out_for_decoder = get_output(l_out_for_decoder, X)

    loss_reconstruction = squared_error(net_out_for_decoder, X).mean()
    loss_segmentation = binary_crossentropy(net_out_for_classifier,
                                            net_out_for_decimator).mean()

    if args["mode"] == "segmentation":
        sys.stderr.write(
            "mode = segmentation (loss_combined = loss_segmentation)\n")
        loss_combined = loss_segmentation
    elif args["mode"] == "mixed":
        sys.stderr.write(
            "mode = mixed (loss_combined = loss_segmentation + loss_reconstruction)\n"
        )
        loss_combined = loss_segmentation + loss_reconstruction

    params = get_all_params(
        l_out_for_decoder, trainable=True
    )  # this needs to be fixed for when we do future prediction
    lr = theano.shared(floatX(args["learning_rate"]))

    if "optim" not in args:
        updates = nesterov_momentum(loss_combined,
                                    params,
                                    learning_rate=lr,
                                    momentum=0.9)
    else:
        if args["optim"] == "rmsprop":
            sys.stderr.write("using rmsprop optimisation\n")
            updates = rmsprop(loss_combined, params, learning_rate=lr)
        elif args["optim"] == "adam":
            sys.stderr.write("using adam optimisation\n")
            updates = adam(loss_combined, params, learning_rate=lr)

    # todo: fix [loss,loss]
    train_fn = theano.function(
        [X, Y], [loss_reconstruction, loss_segmentation, loss_combined],
        updates=updates,
        on_unused_input='warn')
    loss_fn = theano.function(
        [X, Y], [loss_reconstruction, loss_segmentation, loss_combined],
        on_unused_input='warn')
    classifier_out_fn = theano.function([X],
                                        net_out_for_classifier,
                                        on_unused_input='warn')
    decoder_out_fn = theano.function([X],
                                     net_out_for_decoder,
                                     on_unused_input='warn')
    return {
        "train_fn": train_fn,
        "loss_fn": loss_fn,
        "classifier_out_fn": classifier_out_fn,
        "decoder_out_fn": decoder_out_fn,
        "lr": lr,
        "l_out_for_classifier": l_out_for_classifier,
        "l_out_for_decimator": l_out_for_decimator,
        "l_out_for_decoder": l_out_for_decoder
    }
コード例 #30
0
    def compile_theano_functions(self, data_type='2D', loss='cross_entropy'):
        assert self.net != None

        ### symbolic theano input
        theano_args = OrderedDict()
        dim = len(self.cf.dim)

        if data_type == '2D':
            assert dim == 2
            theano_args['X'] = T.tensor4()
            theano_args['y'] = T.tensor4()
            theano_args['X'].tag.test_value = np.random.rand(
                20, 1, 256, 256).astype('float32')

            self.logger.info('Net: Working with 2D data.')
            val_args = deepcopy(theano_args)
            train_args = deepcopy(theano_args)
            train_args['lr'] = T.scalar(name='lr')

            ### prediction functions

            # get flattened softmax prediction of shape (pixels, classes), where pixels = b*0*1
            prediction_train_smax_flat = get_output(
                self.net[self.cf.out_layer_flat],
                train_args['X'],
                deterministic=False)
            prediction_val_smax_flat = get_output(
                self.net[self.cf.out_layer_flat],
                val_args['X'],
                deterministic=True)

            # reshape softmax prediction: shapes (pixels,c) -> (b,c,0,1)
            prediction_train_smax = prediction_train_smax_flat.reshape(
                (train_args['X'].shape[0], self.cf.out_dim[0],
                 self.cf.out_dim[1], self.cf.num_classes)).transpose(
                     (0, 3, 1, 2))
            prediction_val_smax = prediction_val_smax_flat.reshape(
                (val_args['X'].shape[0], self.cf.out_dim[0],
                 self.cf.out_dim[1], self.cf.num_classes)).transpose(
                     (0, 3, 1, 2))
            self.predict_smax['train'] = theano.function([train_args['X']],
                                                         prediction_train_smax)
            self.predict_smax['val'] = theano.function([val_args['X']],
                                                       prediction_val_smax)

            # reshape target vector: shapes (b,c,0,1) -> (b*0*1,c)
            flat_target_train = train_args['y'].transpose(
                (0, 2, 3, 1)).reshape((-1, self.cf.num_classes))
            flat_target_val = val_args['y'].transpose((0, 2, 3, 1)).reshape(
                (-1, self.cf.num_classes))

        elif data_type == '3D':
            assert dim == 3
            theano_args['X'] = T.tensor5()
            theano_args['y'] = T.tensor5()
            self.logger.info('Net: Working with 3D data.')
            val_args = deepcopy(theano_args)
            train_args = deepcopy(theano_args)
            train_args['lr'] = T.scalar(name='lr')

            ### prediction functions

            # get flattened softmax prediction of shape (pixels, classes), where pixels = b*0*1*2
            prediction_train_smax_flat = get_output(
                self.net[self.cf.out_layer_flat],
                train_args['X'],
                deterministic=False)
            prediction_val_smax_flat = get_output(
                self.net[self.cf.out_layer_flat],
                val_args['X'],
                deterministic=True)

            # reshape softmax prediction: shapes (pixels,c) -> (b,c,0,1,2)
            prediction_train_smax = prediction_train_smax_flat.reshape(
                (train_args['X'].shape[0], self.cf.dim[0], self.cf.dim[1],
                 self.cf.dim[2], self.cf.num_classes)).transpose(
                     (0, 4, 1, 2, 3))
            prediction_val_smax = prediction_val_smax_flat.reshape(
                (val_args['X'].shape[0], self.cf.dim[0], self.cf.dim[1],
                 self.cf.dim[2], self.cf.num_classes)).transpose(
                     (0, 4, 1, 2, 3))
            self.predict_smax['train'] = theano.function([train_args['X']],
                                                         prediction_train_smax)
            self.predict_smax['val'] = theano.function([val_args['X']],
                                                       prediction_val_smax)

            # reshape target vector: shapes (b,c,0,1,2) -> (b*0*1*2,c)
            flat_target_train = train_args['y'].transpose(
                (0, 2, 3, 4, 1)).reshape((-1, self.cf.num_classes))
            flat_target_val = val_args['y'].transpose((0, 2, 3, 4, 1)).reshape(
                (-1, self.cf.num_classes))

        pred_train_one_hot = get_one_hot_prediction(prediction_train_smax,
                                                    self.cf.num_classes)
        pred_val_one_hot = get_one_hot_prediction(prediction_val_smax,
                                                  self.cf.num_classes)
        self.predict_one_hot['val'] = theano.function([val_args['X']],
                                                      pred_val_one_hot)
        self.predict_one_hot['train'] = theano.function([train_args['X']],
                                                        pred_train_one_hot)

        prediction_val = T.argmax(prediction_val_smax, axis=1)
        prediction_train = T.argmax(prediction_train_smax, axis=1)
        self.predict['val'] = theano.function([val_args['X']], prediction_val)
        self.predict['train'] = theano.function([train_args['X']],
                                                prediction_train)

        ### evaluation metrics
        train_dices_hard = binary_dice_per_instance_and_class(
            pred_train_one_hot, train_args['y'], dim)
        val_dices_hard = binary_dice_per_instance_and_class(
            pred_val_one_hot, val_args['y'], dim)
        train_dices_soft = binary_dice_per_instance_and_class(
            prediction_train_smax, train_args['y'], dim)
        val_dices_soft = binary_dice_per_instance_and_class(
            prediction_val_smax, val_args['y'], dim)

        ### loss types
        if loss == 'cross_entropy':
            self.loss['train'] = categorical_crossentropy(
                prediction_train_smax_flat, flat_target_train).mean()
            self.loss['val'] = categorical_crossentropy(
                prediction_val_smax_flat, flat_target_val).mean()

        if loss == 'weighted_cross_entropy':
            theano_args['w'] = T.fvector()
            train_args['w'] = T.fvector()
            train_loss = categorical_crossentropy(prediction_train_smax_flat,
                                                  flat_target_train)
            train_loss *= train_args['w']
            self.loss['train'] = train_loss.mean()

            val_args['w'] = T.fvector()
            val_loss = categorical_crossentropy(prediction_val_smax_flat,
                                                flat_target_val)
            val_loss *= val_args['w']
            self.loss['val'] = val_loss.mean()

        if loss == 'dice':
            self.loss['train'] = 1 - train_dices_soft.mean()
            self.loss['val'] = 1 - val_dices_soft.mean()
        self.logger.info('Net: Using {} loss.'.format(loss))

        if self.cf.use_weight_decay:
            training_loss = self.loss['train'] +\
                self.cf.weight_decay * lasagne.regularization.regularize_network_params(self.net[self.cf.out_layer_flat],
                             lasagne.regularization.l2)
            self.logger.info('Net: Using weight decay of {}.'.format(
                self.cf.weight_decay))
        else:
            training_loss = self.loss['train']

        ### training functions
        params = get_all_params(self.net[self.cf.out_layer_flat],
                                trainable=True)
        grads = theano.grad(training_loss, params)
        updates = adam(grads, params, learning_rate=train_args['lr'])

        self.train_fn = theano.function(train_args.values(),
                                        [self.loss['train'], train_dices_hard],
                                        updates=updates)
        self.val_fn = theano.function(val_args.values(),
                                      [self.loss['val'], val_dices_hard])

        self.logger.info('Net: Compiled theano functions.')
コード例 #31
0
    def __init__(
        self,
        input_shape,
        output_dim,
        hidden_sizes,
        conv_filters,
        conv_filter_sizes,
        conv_strides,
        conv_pads,
        hidden_nonlinearity=LN.tanh,
        output_pi_nonlinearity=LN.softmax,
        conv_W_init=LI.GlorotUniform(),
        hidden_W_init=NormCInit(1.0),
        output_pi_W_init=NormCInit(0.01),  # (like in OpenAI baselines)
        output_v_W_init=NormCInit(1.0),
        all_b_init=LI.Constant(0.),
        hidden_h_init=LI.Constant(0.),
        hidden_init_trainable=False,
        pixel_scale=255.,
        input_var=None,
        name=None,
    ):

        if name is None:
            prefix = ""
        else:
            prefix = name + "_"

        if input_var is None:
            # NOTE: decide whether to provide frame history in each obs
            input_var = T.tensor5('input', dtype='uint8')
            step_input_var = T.tensor4('step_input', dtype='uint8')
        assert input_var.ndim == 5
        assert len(input_shape) == 3

        # First, build the TRAINING layers. ###################################
        l_in = L.InputLayer(shape=(None, None) + input_shape,
                            input_var=input_var)
        x = ScalarFixedScaleLayer(l_in, scale=pixel_scale, name='pixel_scale')
        # Reshape leading dimensions for convolution (n_batch x n_step)
        n_batch, n_step = x.shape[0], x.shape[1]
        x = L.reshape(x, (n_batch * n_step, ) + input_shape)
        ls_conv = list()
        for i, (n_filters, size, stride, pad) in enumerate(
                zip(conv_filters, conv_filter_sizes, conv_strides, conv_pads)):
            x = L.Conv2DLayer(
                x,
                num_filters=n_filters,
                filter_size=size,
                stride=(stride, stride),
                pad=pad,
                nonlinearity=hidden_nonlinearity,
                W=conv_W_init,
                b=all_b_init,
                name="%sconv_hidden_%d" % (prefix, i),
            )
            ls_conv.append(x)
        l_conv_out = x
        # Reshape leading dimensions for recurrence, might as well flatten trailing
        x = L.reshape(x, [n_batch, n_step, -1])
        ls_recurrent = list()
        ls_prev_hidden = list()
        for i, hidden_size in enumerate(hidden_sizes):
            l_prev_hidden = L.InputLayer(shape=(None, ) + hidden_size)
            x = RecurrentLayer(
                incomings=(x, l_prev_hidden),
                num_units=hidden_size,
                nonlinearity=hidden_nonlinearity,
                name="%shidden_recurrent_%d" % (prefix, i),
                W_xh=hidden_W_init,
                W_hh=hidden_W_init,
                b=all_b_init,
                h0=hidden_h_init,
                h0_trainable=hidden_init_trainable,
            )
            ls_prev_hidden.append(l_prev_hidden)
            ls_recurrent.append(x)
        l_out_pi = L.DenseLayer(
            x,
            num_units=output_dim,
            nonlinearity=output_pi_nonlinearity,
            name="%soutput_pi" % (prefix, ),
            W=output_pi_W_init,
            b=all_b_init,
        )
        l_out_pi = L.reshape(l_out_pi, [n_batch, n_step, output_dim])
        l_out_v = L.DenseLayer(
            x,
            num_units=1,
            nonlinearity=LN.linear,
            name="%soutput_v" % (prefix, ),
            W=output_v_W_init,
            b=all_b_init,
        )
        l_out_v = L.reshape(l_out_v, [n_batch, n_step])

        # Second, repeat for one-step INFERENCE layers (no time dimension) ####
        # (yes this is annoying)
        # Needed because input has different n_dim, and different reshaping
        # throughout.
        l_step_in = L.InputLayer(shape=(None, ) + input_shape,
                                 input_var=step_input_var)
        x_step = ScalarFixedScaleLayer(l_step_in,
                                       scale=pixel_scale,
                                       name='step_pixel_scale')
        for i, (n_filters, size, stride, pad) in enumerate(
                zip(conv_filters, conv_filter_sizes, conv_strides, conv_pads)):
            x_step = L.Conv2DLayer(
                x_step,
                num_filters=n_filters,
                filter_size=size,
                stride=(stride, stride),
                pad=pad,
                nonlinearity=hidden_nonlinearity,
                W=ls_conv[i].W,  # must use the same parameter variable
                b=ls_conv[i].b,
                name="%sconv_hidden_step_%d" % (prefix, i),
            )
        l_step_conv_out = x_step
        ls_step_hidden = list()
        for i, hidden_size in enumerate(hidden_sizes):
            x_step = RecurrentLayer(
                incomings=(x_step, ls_prev_hidden[i]),
                num_units=hidden_size,
                nonlinearity=hidden_nonlinearity,
                name="%shidden_step_%d" % (prefix, i),
                W_xh=ls_recurrent[i].W_xh,
                W_hh=ls_recurrent[i].W_hh,
                b=ls_recurrent[i].b,
                h0=ls_recurrent[i].h0,
                h0_trainable=hidden_init_trainable,
            )
            ls_step_hidden.append(x_step)

        l_step_pi = L.DenseLayer(
            x_step,
            num_units=output_dim,
            nonlinearity=output_pi_nonlinearity,
            W=l_out_pi.W,
            b=l_out_pi.b,
        )

        l_step_v = L.DenseLayer(
            x_step,
            num_units=1,
            nonlinearity=LN.linear,
            W=l_out_v.W,
            b=l_out_v.b,
        )
        l_step_v = L.reshape(l_step_v, [-1])

        self._l_out_pi = l_out_pi
        self._l_out_v = l_out_v
        self._l_in = l_in
        self._l_conv_out = l_conv_out
        self._ls_recurrent = ls_recurrent
        self._ls_prev_hidden = ls_prev_hidden

        self._l_step_in = l_step_in
        self._ls_step_hidden = ls_step_hidden
        self._l_step_pi = l_step_pi
        self._l_step_v = l_step_v
        self._l_step_conv_out = l_step_conv_out
コード例 #32
0
net = build_model(weights_path, options)

# iterate through all test scans
for t1, current_scan in zip(t1_test_paths, folder_names):
    t = test_scan(net, t1, options)
    print "    -->  tested subject :", current_scan, "(elapsed time:", t, "min.)"

#### Batch iteration functions

# In[ ]:

from utils import iterate_minibatches, iterate_minibatches_train

# In[ ]:

input_var = T.tensor5(name='input', dtype='float32')
target_var = T.ivector()
input_var2 = T.matrix(name='input2', dtype='float32')
#input_var2 = T.vector2(name='input2', dtype='float32')

#### Network definition

# In[ ]:


def build_net():
    """Method for VoxResNet Building.

	Returns
	-------
	dictionary
コード例 #33
0
    def compile_theano_functions(self, data_type='2D', loss='cross_entropy'):
        assert self.net != None

        ### symbolic theano input
        theano_args = OrderedDict()
        dim = len(self.cf.dim)

        if data_type == '2D':
            assert dim == 2
            theano_args['X'] = T.tensor4()
            theano_args['y'] = T.ivector()
            self.logger.info('Net: Working with 2D data.')

        elif data_type == '3D':
            assert dim == 3
            theano_args['X'] = T.tensor5()
            theano_args['y'] = T.ivector()
            self.logger.info('Net: Working with 3D data.')

        val_args = deepcopy(theano_args)
        train_args = deepcopy(theano_args)
        train_args['lr'] = T.scalar(name='lr')

        ### prediction functions

        # get softmax prediction of shape (b, classes)
        prediction_train_smax = get_output(self.net[self.cf.out_layer],
                                           train_args['X'],
                                           deterministic=False)
        prediction_val_smax = get_output(self.net[self.cf.out_layer],
                                         val_args['X'],
                                         deterministic=True)

        self.predict_smax['train'] = theano.function([train_args['X']],
                                                     prediction_train_smax)
        self.predict_smax['val'] = theano.function([val_args['X']],
                                                   prediction_val_smax)

        # get one hot encoded target vector
        one_hot_target_train = get_one_hot_class_target(
            train_args['y'], self.cf.num_classes)
        one_hot_target_val = get_one_hot_class_target(val_args['y'],
                                                      self.cf.num_classes)

        ### cross entropy loss
        if loss == 'cross_entropy':
            self.loss['train'] = categorical_crossentropy(
                prediction_train_smax, one_hot_target_train).mean()
            self.loss['val'] = categorical_crossentropy(
                prediction_val_smax, one_hot_target_val).mean()

        if self.cf.use_weight_decay:
            training_loss = self.loss['train'] +\
                self.cf.weight_decay * lasagne.regularization.regularize_network_params(self.net[self.cf.out_layer],
                             lasagne.regularization.l2)
            self.logger.info('Net: Using weight decay of {}.'.format(
                self.cf.weight_decay))
        else:
            training_loss = self.loss['train']

        ### accuracy
        train_acc = T.mean(
            T.eq(T.argmax(prediction_train_smax, axis=1), train_args['y']))
        val_acc = T.mean(
            T.eq(T.argmax(prediction_val_smax, axis=1), val_args['y']))

        ### training functions
        params = get_all_params(self.net[self.cf.out_layer], trainable=True)
        grads = theano.grad(training_loss, params)
        updates = adam(grads, params, learning_rate=train_args['lr'])

        self.train_fn = theano.function(train_args.values(),
                                        [self.loss['train'], train_acc],
                                        updates=updates)
        self.val_fn = theano.function(
            val_args.values(),
            [self.loss['val'], val_acc, prediction_val_smax])

        self.logger.info('Net: Compiled theano functions.')
コード例 #34
0
    def build_network(self):
        self.input_var = tensor5()
        self.output_var = matrix()
        net = OrderedDict()
        if self.instance_norm:
            norm_fct = batch_norm
            norm_kwargs = {'axes': (2, 3, 4)}
        else:
            norm_fct = batch_norm
            norm_kwargs = {'axes': 'auto'}

        self.input_layer = net['input'] = InputLayer(
            (self.batch_size, self.n_input_channels, self.input_dim[0],
             self.input_dim[1], self.input_dim[2]), self.input_var)

        net['contr_1_1'] = norm_fct(
            Conv3DLayer(net['input'],
                        self.base_n_filters,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['contr_1_2'] = norm_fct(
            Conv3DLayer(net['contr_1_1'],
                        self.base_n_filters,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['pool1'] = Pool3DLayer(net['contr_1_2'], (1, 2, 2))

        net['contr_2_1'] = norm_fct(
            Conv3DLayer(net['pool1'],
                        self.base_n_filters * 2,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['contr_2_2'] = norm_fct(
            Conv3DLayer(net['contr_2_1'],
                        self.base_n_filters * 2,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        l = net['pool2'] = Pool3DLayer(net['contr_2_2'], (1, 2, 2))
        if self.dropout is not None:
            l = DropoutLayer(l, p=self.dropout)

        net['contr_3_1'] = norm_fct(
            Conv3DLayer(l,
                        self.base_n_filters * 4,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['contr_3_2'] = norm_fct(
            Conv3DLayer(net['contr_3_1'],
                        self.base_n_filters * 4,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        l = net['pool3'] = Pool3DLayer(net['contr_3_2'], (1, 2, 2))
        if self.dropout is not None:
            l = DropoutLayer(l, p=self.dropout)

        net['contr_4_1'] = norm_fct(
            Conv3DLayer(l,
                        self.base_n_filters * 8,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['contr_4_2'] = norm_fct(
            Conv3DLayer(net['contr_4_1'],
                        self.base_n_filters * 8,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        l = net['pool4'] = Pool3DLayer(net['contr_4_2'], (1, 2, 2))
        if self.dropout is not None:
            l = DropoutLayer(l, p=self.dropout)

        net['encode_1'] = norm_fct(
            Conv3DLayer(l,
                        self.base_n_filters * 16,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        l = net['encode_2'] = norm_fct(
            Conv3DLayer(net['encode_1'],
                        self.base_n_filters * 16,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['upscale1'] = Upscale3DLayer(l, (1, 2, 2))

        l = net['concat1'] = ConcatLayer([net['upscale1'], net['contr_4_2']],
                                         cropping=(None, None, "center",
                                                   "center", "center"))
        if self.dropout is not None:
            l = DropoutLayer(l, p=self.dropout)
        net['expand_1_1'] = norm_fct(
            Conv3DLayer(l,
                        self.base_n_filters * 8,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        l = net['expand_1_2'] = norm_fct(
            Conv3DLayer(net['expand_1_1'],
                        self.base_n_filters * 8,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['upscale2'] = Upscale3DLayer(l, (1, 2, 2))

        l = net['concat2'] = ConcatLayer([net['upscale2'], net['contr_3_2']],
                                         cropping=(None, None, "center",
                                                   "center", "center"))
        if self.dropout is not None:
            l = DropoutLayer(l, p=self.dropout)
        net['expand_2_1'] = norm_fct(
            Conv3DLayer(l,
                        self.base_n_filters * 4,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        ds2 = l = net['expand_2_2'] = norm_fct(
            Conv3DLayer(net['expand_2_1'],
                        self.base_n_filters * 4,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['upscale3'] = Upscale3DLayer(l, (1, 2, 2))

        l = net['concat3'] = ConcatLayer([net['upscale3'], net['contr_2_2']],
                                         cropping=(None, None, "center",
                                                   "center", "center"))
        if self.dropout is not None:
            l = DropoutLayer(l, p=self.dropout)
        net['expand_3_1'] = norm_fct(
            Conv3DLayer(l,
                        self.base_n_filters * 2,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        l = net['expand_3_2'] = norm_fct(
            Conv3DLayer(net['expand_3_1'],
                        self.base_n_filters * 2,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['upscale4'] = Upscale3DLayer(l, (1, 2, 2))

        net['concat4'] = ConcatLayer([net['upscale4'], net['contr_1_2']],
                                     cropping=(None, None, "center", "center",
                                               "center"))
        net['expand_4_1'] = norm_fct(
            Conv3DLayer(net['concat4'],
                        self.base_n_filters,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)
        net['expand_4_2'] = norm_fct(
            Conv3DLayer(net['expand_4_1'],
                        self.base_n_filters,
                        3,
                        nonlinearity=self.nonlinearity,
                        pad=self.pad,
                        W=lasagne.init.HeNormal(gain="relu")), **norm_kwargs)

        net['output_segmentation'] = Conv3DLayer(net['expand_4_2'],
                                                 self.num_classes,
                                                 1,
                                                 nonlinearity=None)

        ds2_1x1_conv = Conv3DLayer(ds2,
                                   self.num_classes,
                                   1,
                                   1,
                                   'same',
                                   nonlinearity=lasagne.nonlinearities.linear,
                                   W=lasagne.init.HeNormal(gain='relu'))
        ds1_ds2_sum_upscale = Upscale3DLayer(ds2_1x1_conv, (1, 2, 2))
        ds3_1x1_conv = Conv3DLayer(net['expand_3_2'],
                                   self.num_classes,
                                   1,
                                   1,
                                   'same',
                                   nonlinearity=lasagne.nonlinearities.linear,
                                   W=lasagne.init.HeNormal(gain='relu'))
        ds1_ds2_sum_upscale_ds3_sum = ElemwiseSumLayer(
            (ds1_ds2_sum_upscale, ds3_1x1_conv))
        ds1_ds2_sum_upscale_ds3_sum_upscale = Upscale3DLayer(
            ds1_ds2_sum_upscale_ds3_sum, (1, 2, 2))

        self.seg_layer = l = ElemwiseSumLayer(
            (net['output_segmentation'], ds1_ds2_sum_upscale_ds3_sum_upscale))

        net['dimshuffle'] = DimshuffleLayer(l, (0, 2, 3, 4, 1))
        batch_size, n_z, n_rows, n_cols, _ = lasagne.layers.get_output(
            net['dimshuffle']).shape
        net['reshapeSeg'] = ReshapeLayer(
            net['dimshuffle'],
            (batch_size * n_rows * n_cols * n_z, self.num_classes))
        self.output_layer = net['output_flattened'] = NonlinearityLayer(
            net['reshapeSeg'], nonlinearity=lasagne.nonlinearities.softmax)
data_gen_train = segDataAugm.elastric_transform_generator(data_gen_train, 900, 12)
data_gen_train = segDataAugm.mirror_axis_generator(data_gen_train)
data_gen_train = segDataAugm.center_crop_generator(data_gen_train, CROP_PATCHES_TO_THIS)
data_gen_train = segDataAugm.center_crop_seg_generator(data_gen_train, OUTPUT_PATCH_SIZE)
data_gen_train = MultiThreadedGenerator(data_gen_train, 8, 8)
data_gen_train._start()

net = build_UNet3D(5, BATCH_SIZE, num_output_classes=num_classes, base_n_filters=16, input_dim=CROP_PATCHES_TO_THIS, pad=0)
output_layer_for_loss = net["output_flattened"]

n_batches_per_epoch = 300
# n_batches_per_epoch = np.floor(n_training_samples/float(BATCH_SIZE))
n_test_batches = 30
# n_test_batches = np.floor(n_val_samples/float(BATCH_SIZE))

x_sym = T.tensor5()
seg_sym = T.ivector()
w_sym = T.vector()

# add some weight decay
l2_loss = lasagne.regularization.regularize_network_params(output_layer_for_loss, lasagne.regularization.l2) * 1e-5

# the distinction between prediction_train and test is important only if we enable dropout
prediction_train = lasagne.layers.get_output(output_layer_for_loss, x_sym, deterministic=False)
# we could use a binary loss but I stuck with categorical crossentropy so that less code has to be changed if your
# application has more than two classes
loss_vec = lasagne.objectives.categorical_crossentropy(prediction_train, seg_sym)
loss_vec *= w_sym
loss = loss_vec.mean()
loss += l2_loss
acc_train = T.mean(T.eq(T.argmax(prediction_train, axis=1), seg_sym), dtype=theano.config.floatX)
コード例 #36
0
X_train, y_train, X_test, y_test = load_data("/X_train.npy", "/Y_train.npy", "/X_test.npy", "/Y_test.npy")

X_train_2d = X_train.reshape(X_train.shape[0], 1, 28, 28, 1)
X_train_3d = np.zeros((X_train.shape[0], 1, 40, 40, 40))

X_train_3d[:, :, 6:34, 6:34, 17:23] = X_train_2d
X_train_3d = np.array(X_train_3d, dtype = np.float32)

X_test_2d = X_test.reshape(X_test.shape[0], 1, 28, 28, 1)
X_test_3d = np.zeros((X_test.shape[0], 1, 40, 40, 40))

X_test_3d[:, :, 6:34, 6:34, 17:23] = X_test_2d
X_test_3d = np.array(X_test_3d, dtype = np.float32)

input_var = T.tensor5('inputs')
network = build_cnn(input_var, 100)
network_output = lasagne.layers.get_output(network)
get_rotated = theano.function([input_var], network_output)


# Start Creating training 3d MNIST Data
image_result_list = []
for i in range(X_train_3d.shape[0] // 100):
    x_degree = np.random.randint(-45, 45, 100).reshape(100,)
    y_degree = np.random.randint(-45, 45, 100).reshape(100,)
    z_degree = np.random.randint(-45, 45, 100).reshape(100,)
    lasagne.layers.set_all_param_values(network, [np.array(x_degree,dtype=np.float32),
                                                  np.array(y_degree,dtype=np.float32),
                                                  np.array(z_degree,dtype=np.float32)])
    image_result = get_rotated(X_train_3d[100 * i : 100 * (i+1)])
コード例 #37
0
    input_shape = (None, None, Convlayersize[-4], Convlayersize[-4],
                   Convlayersize[-4])
    filter_shape = (Channel[-4], Channel[-5], kernal[-4], kernal[-4],
                    kernal[-4])

    GlX = sigmoid(
        conv(Gl4,
             wx,
             filter_shape=filter_shape,
             input_shape=input_shape,
             conv_mode='deconv'))
    return GlX


X = T.tensor5()
Z = T.matrix()

gX = gen(Z, *gen_params)

print 'COMPILING'
t = time()
# _train_g = theano.function([X, Z, Y], cost, updates=g_updates)
# _train_d = theano.function([X, Z, Y], cost, updates=d_updates)
_gen = theano.function([Z], gX)
print '%.2f seconds to compile theano functions' % (time() - t)

# trX, trY, ntrain = load_shapenet_train()
n = 10
nbatch = 10
rng = np.random.RandomState(int(time()))
コード例 #38
0
ファイル: interpolate.py プロジェクト: justanhduc/DeepLTE
def interpolate(config_file, *args):
    net = DeepLTE(config_file)
    mon = nn.monitor.Monitor(config_file)
    mon.dump_model(net)

    X__ = T.tensor5('input', theano.config.floatX)
    X = X__[0]
    X_nodes = X[net.nodes]
    X_targets = X[net.targets]
    X_recon = T.concatenate((X_nodes, X_targets))
    X_ = theano.shared(
        np.zeros((
            1,
            net.num_frames,
        ) + net.input_tensor_shape[1:], 'float32'), 'input_placeholder')
    dm = VideoManager(config_file, X_)

    # training costs
    net.set_training_status(True)
    lr_ = theano.shared(net.learning_rate, 'learning rate')
    updates, cost, psnr = net.learn(X_nodes,
                                    X_recon,
                                    lambda1=1.,
                                    lambda2=1e-3,
                                    lambda3=1e-4,
                                    learning_rate=lr_)
    optimize = nn.compile([], [cost, psnr],
                          updates=updates,
                          givens={X__: X_},
                          name='optimize deepLTE')

    # testing cost
    net.set_training_status(False)
    W = T.scalar('pos', 'float32')
    new_frame = net(X_nodes, W)
    test = nn.compile([W], new_frame, givens={X__: X_}, name='test deepLTE')

    # training scheme
    last_seq_cost = -np.inf
    for seq, _ in enumerate(dm.get_batches()):
        print('Interpolating sequence %d' % (seq + 1))
        iteration = 0
        cost = 1e10
        start_time = time.time()
        while iteration < net.n_epochs:
            iteration += 1

            _recon_cost, _psnr = optimize()
            if np.isnan(_recon_cost) or np.isinf(_recon_cost):
                raise ValueError('Training failed.')
            cost = _recon_cost

            if iteration % net.validation_frequency == 0:
                mon.plot('reconstruction train cost %d' % (seq + 1),
                         _recon_cost)
                mon.plot('train psnr %d' % (seq + 1), _psnr)
                mon.plot('time elapsed %d' % (seq + 1),
                         (time.time() - start_time) / 60.)
                mon.flush()
            mon.tick()
            if cost < last_seq_cost:
                break

        for idx, pos in enumerate(np.array(net.interps, dtype='float32')):
            img = test(pos)
            mon.save_image('%d %d' % (seq + 1, idx), img, dm.unnormalize)
        mon.flush()
        if seq == 0:
            last_seq_cost = cost
コード例 #39
0
def get_rcnn_kwargs(input_width, input_height,
                    num_channels,
                    conv_num_filters,
                    conv_filter_size,
                    pool_size, rec_num_units,
                    p_dropout=0.5,
                    learning_rate=1e-3,
                    recurrent_layer_type=MILSTMLayer,
                    **kwargs):

    # Select number of gradient steps to be used for BPTT
    if 'gradient_steps' not in kwargs:
        gradient_steps = -1
    else:
        gradient_steps = kwargs['gradient_steps']

    # Input shape is (batch_size, sequence_length, num_channels,
    # input_height, input_width)
    input_shape = (None, None, num_channels, input_height, input_width,)

    # Define input layer
    l_in = lasagne.layers.InputLayer(input_shape)
    # symbolic variable for the input of the layer
    input_var = l_in.input_var
    # symbolic variables representing the size of the layer
    bsize, seqlen, _, _, _ = input_var.shape

    # Reshape layer for convolutional stage
    l_reshape_1 = lasagne.layers.ReshapeLayer(
        l_in, (-1, num_channels, input_height, input_width))

    # Convolutional stage
    l_conv = lasagne.layers.Conv2DLayer(l_reshape_1, conv_num_filters,
                                        conv_filter_size,
                                        nonlinearity=None, b=None)
    # Add bias and nonlinearities (so that they don't get included
    # in the computation of the gradient in the inverse layer
    # np.random.seed(84)
    # bias = np.random.rand(conv_num_filters).astype(floatX) % 0.1
    l_conv_b = lasagne.layers.BiasLayer(l_conv)  # , b=bias)
    l_conv_nl = lasagne.layers.NonlinearityLayer(l_conv_b,
                                                 nonlinearity=nonlinearities.sigmoid)
    # Max pooling layer
    l_pool = lasagne.layers.MaxPool2DLayer(l_conv_nl,
                                           pool_size=pool_size)

    # Dropout layer
    l_dropout = lasagne.layers.DropoutLayer(l_pool,
                                            p_dropout)

    # output shape for the convolutional stage
    out_shape = l_pool.output_shape

    # Reshape layer for recurrent stage
    # the shape is now (batch_size, sequence_length, num_channels * input_width *
    # input_height)
    l_reshape_2 = lasagne.layers.ReshapeLayer(
        l_dropout, (bsize, seqlen, np.prod(out_shape[1:])))

    # Recurrent stage
    l_rec = recurrent_layer_type(
        l_reshape_2, rec_num_units)

    # Decoding stage
    l_rec_d = recurrent_layer_type(
        l_rec, num_units=l_rec.input_shapes[0][-1])

    # Reshape output for decoding convolutional layers
    l_reshape_3 = lasagne.layers.ReshapeLayer(
        l_rec_d, (bsize * seqlen, ) + out_shape[1:])

    # Invert pool layer
    l_inv_pool = lasagne.layers.InverseLayer(l_reshape_3, l_pool)

    # Invert convolutional layers
    l_inv_conv = lasagne.layers.InverseLayer(l_inv_pool, l_conv)
    # Add nonlinearity
    # l_inv_conv_nl = l_inv_conv
    l_inv_conv_nl = lasagne.layers.NonlinearityLayer(l_inv_conv,
                                                     nonlinearity=nonlinearities.sigmoid)

    # Output layer (with same shape as the input)
    l_out = lasagne.layers.ReshapeLayer(
        l_inv_conv_nl, (bsize, seqlen, num_channels, input_height, input_width))

    target = T.tensor5()

    # Mask output
    # Are binary masks necessary?
    deterministic_out = myMask(
        lasagne.layers.get_output(l_out, deterministic=True),
        input_var)
    stochastic_out = myMask(lasagne.layers.get_output(l_out),
                            input_var)

    # Get parameters
    params = lasagne.layers.get_all_params(l_out, trainable=True)

    # Compute training and validation losses
    stochastic_loss = lasagne.objectives.binary_crossentropy(
        stochastic_out, target).mean()
    stochastic_loss.name = 'stochastic loss'
    deterministic_loss = lasagne.objectives.binary_crossentropy(
        deterministic_out, target).mean()
    deterministic_loss.name = 'deterministic loss'

    # Compute updates
    updates = lasagne.updates.rmsprop(
        stochastic_loss, params, learning_rate=learning_rate)

    train_loss = [stochastic_loss]
    valid_loss = [deterministic_loss]

    return dict(l_in=l_in, l_out=l_out,
                train_loss=train_loss,
                valid_loss=valid_loss,
                # input_var=input_var,
                target=target, updates=updates,
                predictions=deterministic_out,
                gradient_steps=gradient_steps,
                model_type='RNN')
コード例 #40
0
ファイル: net.py プロジェクト: nstrel/vkr-image-denoising
    def __init__(self, image_shp, layer_params):
        """
        Для инициализации требуется указать размер входных изображений
        и параметры для каждого сверточного слоя.

        Для каждого слоя свертки автоматически генерируется
        слой транспонированной свертки как обратный.

        Пример:
        Пусть cl_1, cl_2 - сверточные слои. Тогда будет построена
        сеть X->cl_1->cl_2->dcl_2->dcl_1->Y, где dcl_i = (cl_i)^{-1}.
        В сети используются skip-connections: если X проходит через cl_i,
        то на выходе получается X'. Тогда на вход dcl_i подается результат,
        полученный на предыдущем слое + X'.
        Такая архитектура помогает решить проблему исчезающего градиента.

        :param image_shp: размер входных изображений (None, 1, 3, h, w)
                          Если 0-ой элемент != None, то он все равно заменится
        :param layer_params: список параметров для conv слоев
            - число и размер фильтра (count, size)
            - border 'valid' | 'full' | (d,h,w)
            - subsample (d,h,w)
            - dilation пока не используется
        """
        # размер входных изображений хранится отдельно:
        # это нужно для валидации загруженного объекта Nnet из .save файла
        self.input_shape = image_shp

        # заполним значениями по умолчанию None-ы
        # layer_params = self.complete_layer_params(layer_params)

        # параметры, которые уже известны
        # self.filter_shps, self.border_shps, \
        # self.subsamples, self.dilations = list(zip(*layer_params))

        # эти параметры будут вычисляться
        self.image_shps = []
        self.c_layers = []
        self.dc_layers = []

        # символьные переменные
        input = T.tensor5('input', dtype=th.config.floatX)
        expected = T.tensor5('expected', dtype=th.config.floatX)
        self.x = input
        self.y = expected

        # инициализация слоев свертки
        x = input
        i_shp = (None, *image_shp[1:])
        # for (count, size), border, subsample, dilation in layer_params:
        for param in layer_params:
            print(str(param))
            self.image_shps.append(i_shp)
            count, size = param['filter_shape']
            f_shp = (count, i_shp[1], i_shp[2], size, size)
            param['filter_shape'] = f_shp
            param['image_shape'] = i_shp
            # cl = ConvLayer3D(np.random, x, f_shp, i_shp, border, subsample)
            cl = ConvLayer3D(np.random, x, **param)
            self.c_layers.append(cl)
            x = cl.output
            i_shp = cl.output_shp()

        # инициализация слоев транспонированной свертки
        # for i, (((count, size), border, subsample, dilation), i_shp, c_l) \
        #        in enumerate(zip(reversed(layer_params),
        #                         reversed(self.image_shps),
        #                         reversed(self.c_layers))):
        for i, (param, c_l) in enumerate(
                zip(reversed(layer_params), reversed(self.c_layers))):
            # f_shp = (count, i_shp[1], i_shp[2], size, size)
            # dcl = DeconvLayer3D(np.random, x, f_shp, i_shp, border, subsample)
            dcl = DeconvLayer3D(np.random, x, **param)
            self.dc_layers.append(dcl)
            x = dcl.output + c_l.input \
                if i < len(layer_params) - 1 else dcl.output

        # результат применения сети к случайному изображению
        result = T.nnet.relu(x)
        self.func = th.function([input], result)

        cost = T.square(result - expected).mean() / 2
        self.cost = cost

        # результат применения сети к изображению,
        # для которого известен желаемый результат, и оценка
        self.check = th.function(
            [input, expected],
            [result, cost],
        )

        params = [l.W for l in self.c_layers + self.dc_layers] \
                 + [l.b for l in self.c_layers + self.dc_layers]
        self.params = params

        grads = T.grad(cost, params)
        self.grads = grads

        self.train_stop = False

        print('inited')