コード例 #1
0
def BuildModel(modelSpecs, forTrain=True):
	rng = np.random.RandomState()

	## x is for sequential features and y for matrix (or pairwise) features
	x = T.tensor3('x')
	y = T.tensor4('y')

	## mask for x and y, respectively
	xmask = T.bmatrix('xmask')
	ymask = T.btensor3('ymask')

	xem = None
	##if any( k in modelSpecs['seq2matrixMode'] for k in ('SeqOnly', 'Seq+SS') ):
	if config.EmbeddingUsed(modelSpecs):
		xem = T.tensor3('xem')
		distancePredictor = ResNet4DistMatrix( rng, seqInput=x,
											   matrixInput=y, mask_seq=xmask, mask_matrix=ymask,
											   embedInput=xem, modelSpecs=modelSpecs )
	else:
		distancePredictor = ResNet4DistMatrix( rng, seqInput=x,
											   matrixInput=y, mask_seq=xmask, mask_matrix=ymask,
											   modelSpecs=modelSpecs )

	## labelList is a list of label tensors, each having shape (batchSize, seqLen, seqLen) or (batchSize, seqLen, seqLen, valueDims[response] )
	labelList = []
	if forTrain:
		## when this model is used for training. We need to define the label variable
		for response in modelSpecs['responses']:
			labelType = Response2LabelType(response)
			rValDims = config.responseValueDims[labelType]

			if labelType.startswith('Discrete'):
				if rValDims > 1:
				## if one response is a vector, then we use a 4-d tensor
				## wtensor is for 16bit integer
					labelList.append( T.wtensor4('Tlabel4' + response ) )
				else:
					labelList.append( T.wtensor3('Tlabel4' + response ) )
			else:
				if rValDims > 1:
					labelList.append( T.tensor4('Tlabel4' + response ) )
				else:
					labelList.append( T.tensor3('Tlabel4' + response ) )

	## weightList is a list of label weight tensors, each having shape (batchSize, seqLen, seqLen)
	weightList = []
	if len(labelList)>0 and modelSpecs['UseSampleWeight']:
		weightList = [ T.tensor3('Tweight4'+response) for response in modelSpecs['responses'] ]

	## for prediction, both labelList and weightList are empty
	return distancePredictor, x, y, xmask, ymask, xem, labelList, weightList
コード例 #2
0
ファイル: sample1.py プロジェクト: fordream/LearningTheano
# 3-dimensional ndarray
v = T.tensor3(name=None, dtype=T.config.floatX)
report(v)

# 4-dimensional ndarray
v = T.tensor4(name=None, dtype=T.config.floatX)
report(v)

# constructors with fixed data type. (examples with tensor4)
# b: byte, w: word(16bit), l: int64, i: int32
# d:float64, f: float32, c: complex64, z: complex128
v = T.btensor4(name="v")
report(v)

v = T.wtensor4(name="v")
report(v)

v = T.itensor4(name="v")
report(v)

v = T.ltensor4(name="v")
report(v)

v = T.dtensor4(name="v")
report(v)

v = T.ftensor4(name="v")
report(v)

v = T.ctensor4(name="v")
コード例 #3
0
def BuildModel(modelSpecs, forTrain=True):
    rng = np.random.RandomState()

    ## x is for sequential features and y for matrix (or pairwise) features
    x = T.tensor3('x')
    y = T.tensor4('y')

    ## mask for x and y, respectively
    xmask = T.bmatrix('xmask')
    ymask = T.btensor3('ymask')

    xem = None
    ##if any( k in modelSpecs['seq2matrixMode'] for k in ('SeqOnly', 'Seq+SS') ):
    if config.EmbeddingUsed(modelSpecs):
        xem = T.tensor3('xem')

## bounding box for crop of a big protein distance matrix. This box allows crop at any position.
    box = None
    if forTrain:
        box = T.ivector('boundingbox')

## trainByRefLoss can be either 1 or -1. When this variable exists, we train the model using both reference loss and the loss of real data
    trainByRefLoss = None
    if forTrain and config.TrainByRefLoss(modelSpecs):
        trainByRefLoss = T.iscalar('trainByRefLoss')

    distancePredictor = ResNet4DistMatrix(rng,
                                          seqInput=x,
                                          matrixInput=y,
                                          mask_seq=xmask,
                                          mask_matrix=ymask,
                                          embedInput=xem,
                                          boundingbox=box,
                                          modelSpecs=modelSpecs)

    ## labelList is a list of label tensors, each having shape (batchSize, seqLen, seqLen) or (batchSize, seqLen, seqLen, valueDims[response] )
    labelList = []
    if forTrain:
        ## when this model is used for training. We need to define the label variable
        for response in modelSpecs['responses']:
            labelType = Response2LabelType(response)
            rValDims = GetResponseValueDims(response)

            if labelType.startswith('Discrete'):
                if rValDims > 1:
                    ## if one response is a vector, then we use a 4-d tensor
                    ## wtensor is for 16bit integer
                    labelList.append(T.wtensor4('Tlabel4' + response))
                else:
                    labelList.append(T.wtensor3('Tlabel4' + response))
            else:
                if rValDims > 1:
                    labelList.append(T.tensor4('Tlabel4' + response))
                else:
                    labelList.append(T.tensor3('Tlabel4' + response))

    ## weightList is a list of label weight tensors, each having shape (batchSize, seqLen, seqLen)
    weightList = []
    if len(labelList) > 0 and config.UseSampleWeight(modelSpecs):
        weightList = [
            T.tensor3('Tweight4' + response)
            for response in modelSpecs['responses']
        ]

## for prediction, both labelList and weightList are empty
    if forTrain:
        return distancePredictor, x, y, xmask, ymask, xem, labelList, weightList, box, trainByRefLoss
    else:
        return distancePredictor, x, y, xmask, ymask, xem
コード例 #4
0
ファイル: sample1.py プロジェクト: StatML/LearningTheano
# 3-dimensional ndarray
v = T.tensor3(name=None, dtype=T.config.floatX)
report(v)

# 4-dimensional ndarray
v = T.tensor4(name=None, dtype=T.config.floatX)
report(v)

# constructors with fixed data type. (examples with tensor4)
# b: byte, w: word(16bit), l: int64, i: int32
# d:float64, f: float32, c: complex64, z: complex128
v = T.btensor4(name='v')
report(v)

v = T.wtensor4(name='v')
report(v)

v = T.itensor4(name='v')
report(v)

v = T.ltensor4(name='v')
report(v)

v = T.dtensor4(name='v')
report(v)

v = T.ftensor4(name='v')
report(v)

v = T.ctensor4(name='v')