コード例 #1
0
def test(theta, mo_create=dft_mo_create, data_load=dft_data_load):
    print 'loading data...'
    _, _, dataTe = data_load()

    print 'building the graph...'
    x, f = mo_create(theta, is_tr=False)
    # fprop zero-one loss
    y = T.ivector('y')
    ell = loss.create_zeroone(f, y)
    # all in one graph
    fg_te = graph_mgr(
        inputs=[],
        outputs=ell,
        givens={x: dataTe[0], y: dataTe[1]}
    )

    print 'fire the graph...'
    er = fg_te()
    print 'error rate = %5.4f' % (er,)
コード例 #2
0
def train(itMax=100, szBatch=256, lr=0.01, vaFreq=10,
          pa_init=dft_pa_init,
          mo_create=dft_mo_create,
          data_load=dft_data_load):
    print 'loading data...'
    dataTr, dataVa, _ = data_load()

    print 'building graph...'
    # initialize parameters
    theta = pa_init()
    # fprop: the prediction model for MLP
    x, F = mo_create(theta, is_tr=True)
    # fprop: the loss
    y = T.ivector('y')
    ell = loss.create_logistic(F, y)
    # bprop
    dtheta = T.grad(ell, wrt=theta)
    # the graph for training
    ibat = T.lscalar('ibat')
    fg_tr = graph_mgr(
        inputs=[ibat],
        outputs=ell,
        updates=zip(theta, optim.update_gd(theta, dtheta)),
        givens={
            x: dataset.get_batch(ibat, dataTr[0], szBatch=szBatch),
            y: dataset.get_batch(ibat, dataTr[1], szBatch=szBatch)
        }
    )
    # the graph for validation
    ell_zo = loss.create_zeroone(F, y)
    fg_va = graph_mgr(
        inputs=[],
        outputs=ell_zo,
        givens={
            x: dataVa[0],
            y: dataVa[1]
        }
    )

    print 'Fire the graph...'
    trLoss, er_va = [], []
    N = dataTr[0].get_value(borrow=True).shape[0]
    numBatch = (N + szBatch) / szBatch
    print '#batch = %d' % (numBatch,)
    for i in xrange(itMax):
        ibat = i % numBatch
        tmpLoss = fg_tr(ibat)
        print 'training: iteration %d, ibat = %d, loss = %6.5f' % (i, ibat, tmpLoss)
        trLoss.append(tmpLoss)
        if i%vaFreq == 0:
            tmp_er = fg_va()
            print 'validation: iteration %d, error rate = %6.5f' % (i, tmp_er)
            er_va.append(tmp_er)

    # plot
    import matplotlib.pyplot as plt
    plt.subplot(1, 2, 1)
    plt.plot(range(1, len(trLoss)+1), trLoss, 'ro-')
    plt.subplot(1, 2, 2)
    plt.plot([i*vaFreq for i in range(len(er_va))], er_va, 'bx-')
    plt.show(block=True)
    # return the parameters
    return theta