コード例 #1
0
def prepare_homogenous_transition(p, m_dot, steps, fp: FluidProperties):
    x = np.linspace(start=0, stop=1, num=steps) # [-] Vapour quality range
    ## NOTE: subscript sat for sat has been dropped for readability
    # Calculate saturation parameters at edges
    T_sat = fp.get_saturation_temperature(p=p) # [K] Saturation temperature
    rho_l = fp.get_liquid_density_at_psat(p_sat=p) # [kg/m^3]
    rho_g = fp.get_vapour_density_at_psat(p_sat=p) # [kg/m^3] Gas saturation density

    # Void fraction is precalculated because it allow for simple evaluation of velocity when geometry changes
    alpha = tp.homogenous_void_fraction(x=x, rho_g=rho_g, rho_l=rho_l) # [-] Void fraction
    rho = tp.mixture_density(alpha=alpha, rho_g=rho_g, rho_l=rho_l) # [kg/m^3] Mixture density of two-phase flow

    # Mean viscosity has no obvious way to be calculated and as such, a relation must simply be chosen [10.42] from Carey2008 is used.
    mu_l = fp.get_liquid_saturation_viscosity(p_sat=p) # [Pa*s]
    mu_g = fp.get_gas_saturation_viscosity(p_sat=p) # [Pa*s]
    mu = tp.mean_viscosity(mu_g=mu_g, mu_l=mu_l, rho_l=rho_l, rho_g=rho_g, x=x) # [Pa*s]

    # Thermal conductivity at saturation
    kappa_l = fp.get_liquid_saturation_conductivity(p_sat=p) # [W/(m*K)]
    kappa_g = fp.get_gas_saturation_conductivity(p_sat=p) # [W/(m*K)]
    # Mean conductivity
    kappa = tp.mean_conductivity(kappa_g=kappa_g, kappa_l=kappa_l, rho_l=rho_l, rho_g=rho_g, x=x) # [W/(m^2*K)]
    # Prandtl numbers at saturation,
    Pr_l = fp.get_saturation_Prandtl_liquid(p_sat=p) # [-]
    Pr_g = fp.get_saturation_Prandtl_gas(p_sat=p) # [-]
    # Mean Prandtl
    Pr = tp.mean_Prandtl(Pr_g=Pr_g, Pr_l=Pr_l, rho_l=rho_l, rho_g=rho_g, x=x) # [-]



       


    # Saturation enthalpies
    h_sat_liquid = fp.get_saturation_enthalpy_liquid(p=p) # [J/kg]
    h_sat_gas = fp.get_saturation_enthalpy_gas(p=p) # [J/kg]
    # Enthalpy as function of vapour quality x
    h = h_sat_liquid + (h_sat_gas-h_sat_liquid) * x # [J/kg] Saturation enthalpy as flow quality increases
    delta_h = delta_enthalpy_per_section(h=h) # [J/kg] Enthalpy difference per section
    Q_dot = required_power(m_dot=m_dot, delta_h=delta_h) # [W] Heating power required to increase enthalpy in each sections

    return {
        'x': x,
        'alpha': alpha,
        'T_sat': T_sat,
        'rho': rho,
        'rho_l': rho_l,
        'rho_g': rho_g,
        'mu': mu,
        'mu_l': mu_l,
        'mu_g': mu_g,
        'Pr_l': Pr_l,
        'Pr_g': Pr_g,
        'Pr': Pr,
        'kappa_l': kappa_l,
        'kappa_g': kappa_g,
        'kappa': kappa,
        'h': h,
        'Q_dot': Q_dot,
    }
コード例 #2
0
def prepare_single_phase_gas(T_outlet, steps, p_ref, m_dot, fp: FluidProperties):

    T_sat = fp.get_saturation_temperature(p=p_ref) # [K] Saturation temperature
    assert (T_outlet > T_sat)
    assert (steps > 1)

    # Temperature and other intermediate variable in channel section i=0...n
    T, dT = np.linspace(start=T_sat, stop=T_outlet, num=steps, retstep=True) # [K] Temperature T_i
    # The reference temperature for heat transfer calculations
    # The first value [0] should not be important. The heat transfer calculated at i is between i-1 and i
    #  So, from T[i-1] to T[i]. So, if there reference temperature is the average dT/2 must SUBTRACTED
    #T_ref = T - dT/2 # [K] Reference temperature for heat transfer calculations

    ## Get all thermodynamic values that can be precalculated
    # NOTE: all first values must be replaced with the correct values for the saturated gas state
    # Before the values are replaced, sometimes an error is thrown because the values are close to the saturation point
    # That, or NaNs and infinites show up. This shouldn't be a problem, unless the second-to-last points also start getting close to the saturation point
    
    # Enthalpy 
    h = fp.get_enthalpy(T=T, p=p_ref) # [J/kg] Enthalpy
    h[0] = fp.get_saturation_enthalpy_gas(p=p_ref) # [J/kg] Saturation enthalpy at T_n = T_sat
    # Heating power required in section to increase temp by dT. Use enthalpy difference
    delta_h = delta_enthalpy_per_section(h=h) # [J/kg] Enthalpy difference per section
    Q_dot = required_power(m_dot=m_dot, delta_h=delta_h) # [W]

    # Density
    rho = fp.get_density(T=T, p=p_ref) # [kg/m^3] Density
    rho[0] = fp.get_vapour_density_at_psat(p_sat=p_ref) # [kg/m^3] Saturation density
    # Prandtl number
    Pr = fp.get_Prandtl(T=T, p=p_ref) # [-] Prandtl number
    Pr[0] = fp.get_saturation_Prandtl_gas(p_sat=p_ref) # [-] Saturation Prandtl
    # Thermal conductivity 
    kappa = fp.get_thermal_conductivity(T=T, p=p_ref) # [W/(m*K)] Conductivity
    kappa[0] = fp.get_gas_saturation_conductivity(p_sat=p_ref) # [W/(m*K)] Saturation conductivity
    # Viscosity
    mu = fp.get_viscosity(T=T, p=p_ref) # [Pa*s] Viscosity
    mu[0] = fp.get_gas_saturation_viscosity(p_sat=p_ref) # [Pa*s] Saturation viscosity
    return {\
        "T":T, # [K]
        "dT": dT, # [K]
        "rho": rho, # [kg/m^3]
        "h": h, # [J/kg]
        "Q_dot": Q_dot, # [W]
        "Pr": Pr, # [-]
        "kappa": kappa, # [W/(m*K)]
        "mu": mu, # [Pa*s]
        }
コード例 #3
0
def two_phase_single_channel(T_wall,
                             w_channel,
                             Nu_func_gas,
                             Nu_func_liquid,
                             T_inlet,
                             T_chamber,
                             p_ref,
                             m_dot,
                             h_channel,
                             fp: FluidProperties,
                             print_info=True):
    """ Function that calculates the total power consumption of a specific chamber, in order to optimize the chamber

    Args:
        T_wall (K): Wall temperature
        w_channel (m): Channel width
        Nu_func_gas (-): Nusselt function for gas phase
        Nu_func_liquid (-) Nusselt function for liquid phase
        T_inlet (K): Chamber inlet temperature
        T_chamber (K): Chamber outlet temperature (same as T_c in IRT)
        p_ref (Pa): Reference pressure for the Nusselt relation and flow similary parameters (same as inlet pressure as no pressure drop is assumed)
        m_dot (kg/s): Mass flow
        h_channel (m): Channel height
        w_channel_margin (m): The amount of margin around the chamber for structural reasons. Important because it also radiates heat
        fp (-  ): [description]
        print_info(Bool): for debugging purposes
    """

    # Calculate saturation temperature, to determine where transition from gas to liquid occurs
    T_sat = fp.get_saturation_temperature(p=p_ref)  # [K]
    # Sanity check on input
    assert (T_chamber > T_sat)
    assert (T_wall > T_chamber)

    # Calculate the two reference temperatures for the separated phases
    T_bulk_gas = (T_sat + T_chamber) / 2  # [K] Bulk temperature gas phase
    T_bulk_liquid_multi = (
        T_inlet +
        T_sat) / 2  # [K] Bulk temperature of liquid and multi-phase flow
    # Calculate the density at these reference points
    rho_bulk_gas = fp.get_density(T=T_bulk_gas, p=p_ref)  # [kg/m^3]
    rho_bulk_liquid_multi = fp.get_density(T=T_bulk_liquid_multi,
                                           p=p_ref)  # [kg/m^3]

    # Channel geometry
    A_channel = w_channel * h_channel  # [m^2] Area through which the fluid flows
    wetted_perimeter = wetted_perimeter_rectangular(
        w_channel=w_channel, h_channel=h_channel
    )  # [m] Distance of channel cross-section in contact with fluid
    D_hydraulic = hydraulic_diameter_rectangular(
        w_channel=w_channel, h_channel=h_channel)  # [m] Hydraulic diameter

    # Flow similarity parameters (for debugging and Nu calculatoin purposes)
    Re_bulk_gas = fp.get_Reynolds_from_mass_flow(
        m_dot=m_dot, p=p_ref, T=T_bulk_gas, L_ref=D_hydraulic,
        A=A_channel)  # [-] Bulk Reynolds number in the gas phase
    Re_bulk_liquid_multi = fp.get_Reynolds_from_mass_flow(
        m_dot=m_dot,
        p=p_ref,
        T=T_bulk_liquid_multi,
        L_ref=D_hydraulic,
        A=A_channel)  # [-] Bulk Reynolds number in the liquid/multi-phase
    Pr_bulk_gas = fp.get_Prandtl(
        T=T_bulk_gas, p=p_ref)  # [-] Prandtl number in the gas phase
    Pr_bulk_liquid_multi = fp.get_Prandtl(
        T=T_bulk_liquid_multi,
        p=p_ref)  # [-] Prandtl number in liquid/multi-phase
    Bo_sat = fp.get_Bond_number(
        p_sat=p_ref, L_ref=D_hydraulic
    )  # [-] Bond number at saturation pressure (assumed to be p_ref)

    # Calculate Nusselt number in both sections
    args_gas = {
        'Re': Re_bulk_gas,  # Arguments for Nusselt function (gas phase) 
        'Pr': Pr_bulk_gas,
        'Bo': Bo_sat,
    }

    args_liquid_multi = { # Arguments for Nusselt function (liquid/multi phase)
        'Re': Re_bulk_liquid_multi,
        'Pr': Pr_bulk_liquid_multi,
        'Bo': Bo_sat,
        }

    Nu_gas = Nu_func_gas(args=args_gas)
    Nu_liquid_multi = Nu_func_liquid(args=args_liquid_multi)
    # Calculate Stanton number in both sections
    St_gas = Stanton_from_Nusselt_and_velocity(
        Nu=Nu_gas,
        T_ref=T_bulk_gas,
        p_ref=p_ref,
        L_ref=D_hydraulic,
        m_dot=m_dot,
        A=A_channel,
        fp=fp)  # [-] Stanton number in gas phase
    St_liquid_multi = Stanton_from_Nusselt_and_velocity(
        Nu_liquid_multi,
        T_ref=T_bulk_liquid_multi,
        p_ref=p_ref,
        L_ref=D_hydraulic,
        m_dot=m_dot,
        A=A_channel,
        fp=fp)  # [-] Stanton number in liquid phase
    # Calculate velocity for convection parameter (bulk temp used as reference for phase)
    u_bulk_gas = velocity_from_mass_flow(
        A=A_channel, m_dot=m_dot,
        rho=rho_bulk_gas)  # [m/s] Velocity at the gas bulk reference state
    u_bulk_liquid_multi = velocity_from_mass_flow(
        A=A_channel, m_dot=m_dot, rho=rho_bulk_liquid_multi
    )  # [m/s] Velocity at the liquid/multi-phase bulk reference state
    # Convective parameter
    h_conv_gas = h_conv_from_Stanton(
        Stanton=St_gas, u=u_bulk_gas, T_ref=T_bulk_gas, p_ref=p_ref, fp=fp
    )  # [W/(m^2*K)] Convective heat transfer coefficient at bulk gas state
    h_conv_liquid_multi = h_conv_from_Stanton(
        Stanton=St_liquid_multi,
        u=u_bulk_liquid_multi,
        T_ref=T_bulk_liquid_multi,
        p_ref=p_ref,
        fp=fp
    )  # [W/(m^2*K)] Convective heat transfer coefficient at bulk liquid/multi-phase state
    # Required specific enthalpy change for heating the separate sections
    h_outlet = fp.get_enthalpy(
        T=T_chamber, p=p_ref)  # [J/kg] Specific enthalpy at the outlet
    h_sat_gas = fp.get_saturation_enthalpy_gas(
        p=p_ref)  # [J/kg] Specific enthalpy of saturated gas
    h_inlet = fp.get_enthalpy(T=T_inlet, p=p_ref)  # [J/kg]
    # Required specific enthalpy increases
    delta_h_gas = h_outlet - h_sat_gas  # [J/kg] Enthalpy increase needed to go from saturated gas to outlet enthalpy
    delta_h_liquid_multi = h_sat_gas - h_inlet  # [J/k] Enthalpy increase needed to go from inlet enthalpy to saturated gas
    # Required power for those enthalpy changes at the given mass flow
    Q_dot_gas = required_power(m_dot=m_dot, delta_h=delta_h_gas)  # [W]
    Q_dot_liquid_multi = required_power(m_dot=m_dot,
                                        delta_h=delta_h_liquid_multi)  # [W]
    # Required heater area to achieve the required power
    A_heater_gas = required_heater_area(Q_dot=Q_dot_gas,
                                        h_conv=h_conv_gas,
                                        T_wall=T_wall,
                                        T_ref=T_bulk_gas)  # [m^2]
    A_heater_liquid_multi = required_heater_area(
        Q_dot=Q_dot_liquid_multi,
        h_conv=h_conv_liquid_multi,
        T_wall=T_wall,
        T_ref=T_bulk_liquid_multi)  # [m^2]
    # Required length to achieve desired area
    L_channel_gas = A_heater_gas / wetted_perimeter  # [m] Length of channel after gas is saturated
    L_channel_liquid_multi = A_heater_liquid_multi / wetted_perimeter  # [m] Length of channel after heater
    L_channel = L_channel_gas + L_channel_liquid_multi  # [m]
    L_hydrodynamic_entrance = D_hydraulic * Re_bulk_liquid_multi * 0.04  # [m] Hydrodynamic entrance to estimate if the flow is fully developed

    assert (h_outlet > h_sat_gas)
    assert (h_sat_gas > h_inlet)

    if (print_info):
        print("\n--- SPECIFIC ENTHALPY AT DIFFERENT STATIONS ---")
        print("h_outlet: {:4.3f} J/kg".format(h_outlet))
        print("h_sat_gas: {:4.3f} J/kg".format(h_sat_gas))
        print("h_inlet: {:4.3f} J/kg".format(h_inlet))

        print("\n --- REQUIRED POWER ---")
        print("Q_dot_gas: {:2.5f} W".format(Q_dot_gas))
        print("Q_dot_liquid_multi: {:2.5f} W".format(Q_dot_liquid_multi))

        print("\n --- BULK GAS PHASE PARAMETERS --- ")
        print("u: {:3.2f} m/s".format(u_bulk_gas))
        print("Nu: {}".format(Nu_gas))
        print("Re: {}".format(Re_bulk_gas))
        print("Pr: {}".format(Pr_bulk_gas))
        print("St: {}".format(St_gas))
        print("Bo_sat: {}".format(Bo_sat))

        print("\n --- BULK LIQUID/MULTI-PHASE PARAMETERS ---")
        print("u: {:3.4f} m/s".format(u_bulk_liquid_multi))
        print("Nu: {}".format(Nu_liquid_multi))
        print("Re: {}".format(Re_bulk_liquid_multi))
        print("Pr: {}".format(Pr_bulk_liquid_multi))
        print("St: {}".format(St_liquid_multi))

        print("\n --- CHARACTERISTIC GEOMETRIC VALUES --- ")
        print("Hydrodynamic entance length: {:3.3f} micron".format(
            L_hydrodynamic_entrance * 1e6))
        print("Hydraulic diameter: {:3.3f} micron".format(D_hydraulic * 1e6))
        print("L/D: {:4.2f} ".format(L_channel / D_hydraulic))
        print("L/X_T {:4.2f}".format(L_channel / L_hydrodynamic_entrance))

        print("\n --- RESULTING GEOMETRY ---")
        print("Total length: {:3.3f} mm".format(L_channel * 1e3))
        print("Length (liquid/multi): {:3.3f} mm".format(
            L_channel_liquid_multi * 1e3))
        print("Length (gas): {:3.4f} mm".format(L_channel_gas * 1e3))
        print("Relative length (gas) {:3.3f} \%".format(L_channel_gas /
                                                        L_channel * 100))

        ## Return a dictionary with results and interesting intermediate values
    res = {
        "L_channel": L_channel,  # [m] Total length of channel
        "D_hydraulic": D_hydraulic,  # [m] Hydraulic diameter of channel
        "Nu_liquid_multi":
        Nu_liquid_multi,  # [-] Nusselt number of liquid/multi-phase flow
        "Pr_bulk_liquid_multi":
        Pr_bulk_liquid_multi,  # [-] Prandlt number of liquid/multi-phase flow
        "Re_bulk_liquid_multi":
        Re_bulk_liquid_multi,  # [-] Reynolds number of liquid/multi-phase flow
        "St_liquid_multi":
        St_liquid_multi,  # [-] Stanton number of liquid/multi-phase flow
        "h_conv_liquid_multi":
        h_conv_liquid_multi,  # [W/(m^2*K)] Heat transfer coefficient
        "A_heater_liquid_multi":
        A_heater_liquid_multi,  # [m^2] Required heater area for liquid/multi-phase flow
        "L_channel_liquid_multi":
        L_channel_liquid_multi,  # [m] Length of channel to get required heater area
        "u_bulk_liquid_multi":
        u_bulk_liquid_multi,  # [m/s] Bulk flow velocity of liquid/multi-phase flow
        "rho_bulk_liquid_multi":
        rho_bulk_liquid_multi,  # [kg/m^3] Bulk density of liquid/multi-phase flow
        "T_bulk_liquid_multi":
        T_bulk_liquid_multi,  # [K] Bulk temperature of liquid/multi-phase flow
        "delta_h_liquid_multi":
        delta_h_liquid_multi,  # [J/kg] Enthalpy change from inlet to saturated gas
        "Q_dot_liquid_multi":
        Q_dot_liquid_multi,  # [W] Power required for enthalpy change
        ## Same thing but for gas values
        "Nu_gas": Nu_gas,  # [-]
        "Pr_bulk_gas": Pr_bulk_gas,  # [-]
        "Re_bulk_gas": Re_bulk_gas,  # [-]
        "St_gas": St_gas,  # [-]
        "h_conv_gas": h_conv_gas,  # [W/(m^2*K)]
        "A_heater_gas": A_heater_gas,  # [m^2]
        "L_channel_gas": L_channel_gas,  # [m]
        "u_bulk_gas": u_bulk_gas,  # [m/s]
        "rho_bulk_gas": rho_bulk_gas,  # [kg/m^3]
        "T_bulk_gas": T_bulk_gas,  # [K]
        "delta_h_gas": delta_h_gas,  # [J/kg]
        "Q_dot_gas": Q_dot_gas,  # [W]
    }
    return res