train_examples, val_examples = load_train_val_examples(args) trainer.train(args, train_examples, val_examples) def do_eval(args): args.model_path = args.best_model_path eval_examples = load_eval_examples(eval_text_file, eval_bio_file) model = load_model(args) trainer.evaluate(args, model, eval_examples) def do_predict(args): args.model_path = args.best_model_path test_examples = load_test_examples(args) model = load_model(args) trainer.predict(args, model, test_examples) #do_eval(args) #do_predict(args) #print(trainer.pred_results) if __name__ == '__main__': def add_special_args(parser): parser.add_argument("--generate_submission", action="store_true", help="") return parser args = get_args(experiment_params=experiment_params, special_args=[add_special_args]) logger.info(f"args: {args}") main(args)
args.train_file, test_data_generator, args.test_file) elif args.do_train: train_examples, val_examples = load_train_val_examples(args) trainer.train(args, train_examples, val_examples) elif args.do_eval: _, eval_examples = load_train_val_examples(args) model = load_model(args) trainer.evaluate(args, model, eval_examples) elif args.do_predict: test_examples = load_test_examples(args) model = load_model(args) trainer.predict(args, model, test_examples) save_ner_preds(args, trainer.pred_results, test_examples) if __name__ == '__main__': def add_special_args(parser): parser.add_argument("--do_eda", action="store_true", help="") parser.add_argument("--generate_submission", action="store_true", help="") return parser args = get_args([add_special_args]) main(args)