コード例 #1
0
def test_seq2col_window_one(ops, X):
    X = ops.asarray(X)
    base_ops = Ops()
    base_ops.xp = ops.xp
    baseX = base_ops.alloc(X.shape) + X
    target = base_ops.seq2col(base_ops.asarray(baseX), nW=1)
    predicted = ops.seq2col(X, nW=1)
    ops.xp.testing.assert_allclose(target, predicted, atol=0.001, rtol=0.001)
コード例 #2
0
def test_lstm_forward_training_fuzz(ops, args):
    params, H0, C0, X, size_at_t = args
    reference_ops = Ops()
    reference = reference_ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    Y, fwd_state = ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    assert_allclose(fwd_state[2], reference[1][2], atol=1e-4, rtol=1e-3)
    assert_allclose(fwd_state[1], reference[1][1], atol=1e-4, rtol=1e-3)
    assert_allclose(Y, reference[0], atol=1e-4, rtol=1e-3)
コード例 #3
0
def test_lstm_forward_training(ops, depth, dirs, nO, batch_size, nI):
    reference_ops = Ops()
    params, H0, C0, X, size_at_t = get_lstm_args(depth, dirs, nO, batch_size, nI)
    reference = reference_ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    Y, fwd_state = ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    assert_allclose(fwd_state[2], reference[1][2], atol=1e-4, rtol=1e-3)
    assert_allclose(fwd_state[1], reference[1][1], atol=1e-4, rtol=1e-3)
    assert_allclose(Y, reference[0], atol=1e-4, rtol=1e-3)
コード例 #4
0
def test_backprop_seq2col_window_one(ops, X):
    if X.shape[1] % 3:
        return None
    X = ops.asarray(X)
    if ops.xp.abs(X).max() >= 30:
        return None
    base_ops = Ops()
    base_ops.xp = ops.xp
    target = base_ops.backprop_seq2col(X, nW=1)
    predicted = ops.backprop_seq2col(X, nW=1)
    for row in range(target.shape[0]):
        diff = target[row].sum() - predicted[row].sum()
        if diff < -0.1 or diff > 0.1:
            print(row, diff)
            print(target[row])
            print(predicted[row])
    ops.xp.testing.assert_allclose(target, predicted, atol=0.001, rtol=0.001)
コード例 #5
0
ファイル: test_ops.py プロジェクト: admariner/thinc
def test_get_ops():
    assert isinstance(get_ops("numpy"), NumpyOps)
    assert isinstance(get_ops("cupy"), CupyOps)
    # If Apple ops are available, "cpu" should return AppleOps or
    # NumpyOps otherwise.
    try:
        from thinc_apple_ops import AppleOps

        assert isinstance(get_ops("cpu"), AppleOps)
    except ImportError:
        assert isinstance(get_ops("cpu"), NumpyOps)
    # If BigEndian ops are available, "cpu" should return BigEndianOps or
    # NumpyOps otherwise.
    try:
        from thinc_bigendian_ops import BigEndianOps

        assert isinstance(get_ops("cpu"), BigEndianOps)
    except ImportError:
        assert isinstance(get_ops("cpu"), NumpyOps)
    with pytest.raises(ValueError):
        get_ops("blah")
    ops = Ops(numpy)
    assert ops.xp == numpy
コード例 #6
0
    assert arr.shape == (8, 3, 4)
    assert size_at_t[0] == 3
    assert size_at_t[1] == 3
    assert size_at_t[2] == 2
    assert size_at_t[3] == 2
    assert size_at_t[4] == 2
    assert size_at_t[5] == 1
    assert size_at_t[6] == 1
    assert size_at_t[7] == 1
    unpadded = ops.padded2list(padded)
    assert unpadded[0].shape == (5, 4)
    assert unpadded[1].shape == (8, 4)
    assert unpadded[2].shape == (2, 4)


@pytest.mark.parametrize("ops", [Ops(), NumpyOps()])
@pytest.mark.parametrize("nO,nI", [(1, 2), (2, 2), (100, 200), (9, 6)])
def test_LSTM_init_with_sizes(ops, nO, nI):
    model = with_padded(LSTM(nO, nI, depth=1)).initialize()
    for node in model.walk():
        model.ops = ops
        # Check no unallocated params.
        assert node.has_param("LSTM") is not None
        assert node.has_param("HC0") is not None
    for node in model.walk():
        # Check param sizes.
        if node.has_param("LSTM"):
            params = node.get_param("LSTM")
            assert params.shape == (
                ((nO * 4 * nI)) + (nO * 4) + (nO * 4 * nO + nO * 4),
            )
コード例 #7
0
from hypothesis import given, settings
from hypothesis.strategies import composite, integers
from numpy.testing import assert_allclose
from thinc.api import NumpyOps, CupyOps, Ops, get_ops
from thinc.api import get_current_ops, use_ops
from thinc.api import fix_random_seed
from thinc.api import LSTM
import inspect

from .. import strategies
from ..strategies import ndarrays_of_shape


MAX_EXAMPLES = 10

VANILLA_OPS = Ops(numpy)
NUMPY_OPS = NumpyOps()
BLIS_OPS = NumpyOps(use_blis=True)
CPU_OPS = [NUMPY_OPS, VANILLA_OPS]
XP_OPS = [NUMPY_OPS]
if CupyOps.xp is not None:
    XP_OPS.append(CupyOps())
ALL_OPS = XP_OPS + [VANILLA_OPS]


@pytest.mark.parametrize("op", [NumpyOps, CupyOps])
def test_ops_consistency(op):
    """Test that specific ops don't define any methods that are not on the
    Ops base class and that all ops methods define the exact same arguments."""
    attrs = [m for m in dir(op) if not m.startswith("_")]
    for attr in attrs:
コード例 #8
0
ファイル: test_ops.py プロジェクト: EricM2/venv
import numpy
from hypothesis import given, settings
from hypothesis.strategies import composite, integers
from numpy.testing import assert_allclose
from thinc.api import NumpyOps, CupyOps, Ops, get_ops
from thinc.api import get_current_ops, use_ops
from thinc.api import fix_random_seed
from thinc.api import LSTM
import inspect

from .. import strategies
from ..strategies import ndarrays_of_shape

MAX_EXAMPLES = 10

VANILLA_OPS = Ops(numpy)  # type:ignore
NUMPY_OPS = NumpyOps()
BLIS_OPS = NumpyOps(use_blis=True)
CPU_OPS = [NUMPY_OPS, VANILLA_OPS]
XP_OPS = [NUMPY_OPS]
if CupyOps.xp is not None:
    XP_OPS.append(CupyOps())
ALL_OPS = XP_OPS + [VANILLA_OPS]


@pytest.mark.parametrize("op", [NumpyOps, CupyOps])
def test_ops_consistency(op):
    """Test that specific ops don't define any methods that are not on the
    Ops base class and that all ops methods define the exact same arguments."""
    attrs = [m for m in dir(op) if not m.startswith("_")]
    for attr in attrs: