class TypeLetterAgent(Agent): def __init__(self): super().__init__(output=True) self.vision = Vision(self) self.memory = Memory(self) self.audition = Audition(self) self.typing = Typing(Hands(self)) def interpreter(words): if words[0] == 'read': sem = Item(isa='action', type='read', object=words[1]) pointer = self.vision.find(isa='pointer') if pointer is not None: self.vision.encode(pointer) sem.set('x', pointer.x).set('y', pointer.y) return sem elif words[0] == 'done': return Item(isa='done') else: return Item(isa='action', type=words[0], object=words[1]) self.language = Language(self) self.language.add_interpreter(interpreter) def executor(action, context): if action.type == 'read': query = Query(x=action.x, y=action.y) context.set(action.object, self.vision.find_and_encode(query)) elif action.type == 'type': self.typing.type(context.get(action.object)) self.instruction = Instruction( self, self.memory, self.audition, self.language) self.instruction.add_executor(executor)
class ACEUndifferentiatedAgent(Agent): def __init__(self): """Initializes the agent""" super().__init__(output=True) self.memory = Memory(self) self.vision = Vision(self) self.audition = Audition(self) self.typing = Typing(Hands(self)) self.language = Language(self) self.language.add_interpreter(self.interpret) self.instruction = Instruction(self, self.memory, self.audition, self.language) self.instruction.add_executor(self.execute) def _ace_to_owl(self, text): """Converts ACE instruction text to OWL XML using the web API""" url = 'http://attempto.ifi.uzh.ch/ws/ape/apews.perl' params = { 'text': text, 'guess': 'on', # 'solo': 'owlxml', 'cdrs': 'on', 'cowlxml': 'on', } data = parse.urlencode(params).encode() req = request.Request(url, parse.urlencode(params).encode()) res = request.urlopen(req) xml_string = res.read().decode('utf-8') print(xml_string) xml = ElementTree.fromstring(xml_string) print(xml) # print(ElementTree.tostring(xml, encoding='utf8', method='xml')) def interpret(self, words): self._ace_to_owl(' '.join(words)) if words[0] == 'read': sem = Item(isa='action', type='read', object=words[1]) pointer = self.vision.find(isa='pointer') if pointer is not None: self.vision.encode(pointer) sem.set('x', pointer.x).set('y', pointer.y) return sem elif words[0] == 'done': return Item(isa='done') else: return Item(isa='action', type=words[0], object=words[1]) def execute(self, action, context): if action.type == 'read': query = Query(x=action.x, y=action.y) context.set(action.object, self.vision.find_and_encode(query)) elif action.type == 'type': self.typing.type(context.get(action.object)) def run(self, time=300): goal = self.instruction.listen_and_learn() self.instruction.execute(goal)
def run_trial(self): agent = Agent(output=False) memory = Memory(agent, Memory.OPTIMIZED_DECAY) memory.decay_rate = .5 memory.activation_noise = .5 memory.retrieval_threshold = -1.8 memory.latency_factor = .450 vision = Vision(agent) typing = Typing(Hands(agent)) self.trial_start = 0 self.block_index = 0 def fn(): for i in range(PairedAssociatesTest.N_BLOCKS): self.block_index = i pairs = PairedAssociatesTest.PAIRS.copy() random.shuffle(pairs) for pair in pairs: self.trial_start = agent.time() vision.clear().add(Visual(50, 50, 20, 20, 'word'), pair[0]) agent.wait(5.0) vision.clear().add( Visual(50, 50, 20, 20, 'digit'), pair[1]) agent.wait(5.0) agent.run_thread(fn) def type_fn(c): self.rt.add(self.block_index, agent.time() - self.trial_start) typing.add_type_fn(type_fn) for i in range(PairedAssociatesTest.N_BLOCKS): for _ in range(len(PairedAssociatesTest.PAIRS)): word = vision.encode(vision.wait_for(isa='word')) chunk = memory.recall(word=word) if chunk: typing.type(chunk.get('digit')) self.correct.add(i, 1) else: self.correct.add(i, 0) digit = vision.encode(vision.wait_for(isa='digit')) memory.store(word=word, digit=digit) agent.wait_for_all()
class SearchAgent(Agent): def __init__(self): super().__init__(output=True) self.vision = Vision(self) self.audition = Audition(self) self.typing = Typing(Hands(self)) def run(self, time=300): while self.time() < time: visual = self.vision.wait_for(seen=False) while (visual is not None and not visual.isa == 'vertical-line'): obj = self.vision.encode(visual) print('**** skip') visual = self.vision.find(seen=False) if visual: print('**** found') self.typing.type('j') self.vision.encode(visual) else: print('**** not found') self.typing.type('k')
def test_vision(self, output=False): agent = Agent(output=output) eyes = Eyes(agent) vision = Vision(agent, eyes) eyes.move_to(100, 100) vision.add(Visual(50, 50, 20, 20, 'text'), "Hello") vision.add(Visual(150, 150, 20, 20, 'text'), "Goodbye") self.assertEqual("Hello", vision.find_and_encode( Query(isa='text').lt('x', 100))) self.assertEqual("Goodbye", vision.find_and_encode(seen=False)) vision.start_wait_for(isa='cross') agent.wait(2.0) vision.add(Visual(200, 200, 20, 20, 'cross'), "cross") self.assertEqual("cross", vision.encode(vision.get_found())) self.assertAlmostEqual(2.7, agent.time(), 1) agent.wait_for_all()
def test_vision(self, output=False): agent = Agent(output=output) display = Environment().display eyes = Eyes(agent) vision = Vision(agent, display, eyes) eyes.move_to(100, 100) display.add_text(50, 50, 'Hello') display.add_text(150, 150, 'Goodbye') self.assertEqual( "Hello", vision.find_and_encode(Query(isa='text').lt('x', 100))) self.assertEqual("Goodbye", vision.find_and_encode(seen=False)) vision.start_wait_for(isa='cross') agent.wait(2.0) display.add(200, 200, 20, 20, 'cross', "cross") self.assertEqual("cross", vision.encode(vision.get_found())) self.assertAlmostEqual(2.7, agent.time(), 1) agent.wait_for_all()
class OWLUndifferentiatedAgent(Agent): def __init__(self): """Initializes the agent""" super().__init__(output=True) self.memory = Memory(self) self.vision = Vision(self) self.audition = Audition(self) self.hands = Hands(self) self.mouse = Mouse(self.hands, self.vision) self.typing = Typing(self.hands) self.language = Language(self) self.language.add_interpreter(self.interpret) # self.instruction = Instruction( # self, self.memory, self.audition, self.language) # self.instruction.add_executor(self.execute) def _interpret_predicate(self, text, isa='fact', last=None): chunk = None (pred, args) = text.replace(')', '').split('(') args = args.split(',') if len(args) == 1: chunk = Chunk(isa=isa, predicate='isa', subject=args[0], object=pred) elif len(args) == 2: chunk = Chunk(isa=isa, predicate=pred, subject=args[0], object=args[1]) if chunk: if last: chunk.set('last', last.id) self.memory.store(chunk) return chunk def _interpret_rule(self, text): lhs, rhs = text.split('=>') pred_pat = re.compile(r'[A-Za-z_-]+\([A-Za-z_,-]*\)') rule = Chunk(isa='rule') self.memory.store(rule) last = rule for t in pred_pat.findall(lhs): chunk = self._interpret_predicate(t, isa='condition', last=last) last = chunk last = rule for t in pred_pat.findall(rhs): chunk = self._interpret_predicate(t, isa='action', last=last) last = chunk return rule def _interpret_owl(self, text): text = text.replace(' ', '') if text.find('=>') >= 0: return self._interpret_rule(text) else: return self._interpret_predicate(text) def interpret(self, words): return self._interpret_owl(''.join(words)) def _deep_find(self, isa): visual = self.vision.find(isa=isa, seen=False) if visual: return visual else: part_of = self.memory.recall(predicate='isPartOf', object=isa) if part_of: return self._deep_find(part_of.subject) else: return None def _execute_condition(self, cond, context): if cond.predicate == 'appearsIn': visual = self._deep_find(cond.subject) if visual: context.set('visual', visual) visobj = self.vision.encode(visual) context.set(cond.subject, visobj) return True return False def _execute_action(self, action, context): if action.subject == 'Subject': print('************** ' + action.predicate) if action.predicate == 'click': visual = context.get('visual') self.mouse.point_and_click(visual) elif action.predicate == 'remember': pass def execute(self, chunk, context): if chunk.isa == 'rule': cond = self.memory.recall(isa='condition', last=chunk.id) while cond: if not self._execute_condition(cond, context): return False cond = self.memory.recall(isa='condition', last=cond.id) act = self.memory.recall(isa='action', last=chunk.id) while act: self._execute_action(act, context) act = self.memory.recall(isa='action', last=act.id) return True def run(self, time=300): context = Item() chunk = None done = Query(predicate='isa', object='done') while not (chunk and done.matches(chunk)): text = self.audition.listen_for_and_encode() chunk = self.language.interpret(text) while self.time() < time: chunk = self.memory.recall(isa='rule') self.execute(chunk, context)
class UndifferentiatedAgent(Agent): def __init__(self, env, output=True): super().__init__(output=output) #basic pass-ins for now for speed of testing self.memory = OntologyMemory(self,stopOldServer=False,owlFile='uagent.owl') self.vision = Vision(self, env.display) self.audition = Audition(self, env.speakers) self.motor = Motor(self, self.vision, env) self.interpreter = Interpreter(self.memory) self.language = Language(self) self.language.add_interpreter(lambda words: self.interpreter.interpret_ace(' '.join(words))) self.condition_handler = ConditionHandler(self) self.action_handler = ActionHandler(self) # #Not used at the moment. # self.item_role_list = ['target','stimulus','distractor','responseButton','infoButton'] # #"ItemRole" in the Ontology. # #For future implementations (trying to use other labs' instructions) # self.agent_synonym_list = ['subject','participant','you'] def is_action(self, rule): for action in rule.actions: if self.action_handler._has(action['name']): return True return False def check_condition(self, cond, context): handler = self.condition_handler._get(cond['name']) if handler: self.think('check condition "{}"'.format(cond)) return handler(cond, context) else: return True def execute_action(self, action, context): handler = self.action_handler._get(action['name']) if handler: self.think('execute action "{}"'.format(action)) handler(action, context) def process_rule(self, rule, context): if self.is_action(rule): self.think('process rule "{}"'.format(rule)) for cond in rule.conditions: if not self.check_condition(cond, context): return False for action in rule.actions: self.execute_action(action, context) return True def run(self, time=60): instr_visual = self.vision.wait_for(isa='text') instructions = self.vision.encode(instr_visual) self.language.interpret(instructions) while self.time() < time: context = Chunk() for rule in self.memory.recall_ground_rules(): self.process_rule(rule, context)