def __init__(self, hypos): Suite.__init__(self) for hypo in hypos: if(hypo == 'No_Cancer'): self.Set(hypo, .99) else: self.Set(hypo, .01)
def __init__(self, inferred_goal, hypotheses, actions, \ prob_non_compliance=0.1, prob_viol_detection=0.5, \ prob_sanctioning=0.2, prob_random_punishment=0.01, \ name=''): Suite.__init__(self, hypotheses, name) self.initial_hypotheses = hypotheses # Keep the initial hypotheses to allow later reinitilization self.inferred_goal = inferred_goal self.actions = actions self.nodes = {node for action in actions for node in action.path} self.prob_non_compliance = prob_non_compliance self.prob_viol_detection = prob_viol_detection self.prob_sanctioning = prob_sanctioning self.prob_random_punishment = prob_random_punishment self.SetGoal(inferred_goal)
def __init__(self, prior_type='uniform'): Suite.__init__(self) rangemin, rangemax = 0, 101 if prior_type == 'uniform': priors = map(lambda x: (x, 1), range(rangemin, rangemax)) elif prior_type == 'triangle': rangemid = ceil((rangemin + rangemax) / 2) priors = map( lambda x: (x, x) if x < rangemid else (x, rangemax - x), range(rangemin, rangemax)) for val, prob in priors: self.Set(val, prob) self.Normalize()
def __init__(self, inferred_goal, hypotheses, actions, prob_non_compliance=0.1, name=''): Suite.__init__(self, hypotheses, name) self.inferred_goal = inferred_goal self.actions = actions self.prob_non_compliance = prob_non_compliance if planned(inferred_goal, actions): self.plans = flattened_plan_tree(inferred_goal) else: print "Error: Failed to find any plans for %s given actions %s" % ( inferred_goal, actions)
def __init__(self, hypos): Suite.__init__(self)
def __init__ (self, hypos, alpha = 1.0): Suite.__init__(self) for hypo in hypos: self.Set(hypo, hypo ** (-alpha)) self.Normalize()
def __init__(self): Suite.__init__(self, xrange(0, 101)) # for x in xrange(1, 101): # self.Set(x, 1) # self.Normalize() self.real_val = thinkbayes.Beta().Random()