def test_reroute(self): """Test reroute.""" ge.reroute_ts([self.a0, self.b0], [self.a1, self.b1]) self.assertTrue( match.OpMatcher("c0").input_ops("a0", "b0")(self.c0.op)) self.assertTrue( match.OpMatcher("c1").input_ops("a0", "b0")(self.c1.op)) ge.reroute_ts([self.a1, self.b1], [self.a0, self.b0]) self.assertTrue( match.OpMatcher("c0").input_ops("a1", "b1")(self.c0.op)) self.assertTrue( match.OpMatcher("c1").input_ops("a1", "b1")(self.c1.op))
def gradients(ys, xs, grad_ys=None, checkpoints="collection", **kwargs): """Recompute gradients. Authors: Tim Salimans & Yaroslav Bulatov Modified by: Nikolay Zakirov memory efficient gradient implementation inspired by "Training Deep Nets with Sublinear Memory Cost" by Chen et al. 2016 (https://arxiv.org/abs/1604.06174) ys,xs,grad_ys,kwargs are the arguments to standard tensorflow tf.gradients (https://www.tensorflow.org/versions/r0.12/api_docs/python/train.html#gradients) 'checkpoints' can either be - a list consisting of tensors from the forward pass of the neural net that we should re-use when calculating the gradients in the backward pass all other tensors that do not appear in this list will be re-computed - a string or list specifying how this list should be determined. currently we support - 'speed': checkpoint all outputs of convolutions and matmuls. these ops are usually the most expensive, so checkpointing them maximizes the running speed (this is a good option if nonlinearities, concats, batchnorms, etc are taking up a lot of memory) - 'memory': try to minimize the memory usage (currently using a very simple strategy that identifies a number of bottleneck tensors in the graph to checkpoint) - 'collection': look for a tensorflow collection named 'checkpoints', which holds the tensors to checkpoint - a list: a list of strings to be matched in the names of the tensors """ # print("Calling memsaving gradients with", checkpoints) if not isinstance(ys, list): ys = [ys] if not isinstance(xs, list): xs = [xs] bwd_ops = ge.get_backward_walk_ops([y.op for y in ys], inclusive=True) logging.debug("bwd_ops: %s", len(bwd_ops)) # forward ops are all ops that are candidates for recomputation fwd_ops = ge.get_forward_walk_ops([x.op for x in xs], inclusive=True, within_ops=bwd_ops) logging.debug("fwd_ops: %s", len(fwd_ops)) # exclude ops with no inputs fwd_ops = [op for op in fwd_ops if op.inputs] logging.debug("fwd_ops: %s", len(fwd_ops)) # don't recompute xs, remove variables xs_ops = _to_ops(xs) fwd_ops = [op for op in fwd_ops if op not in xs_ops] fwd_ops = [op for op in fwd_ops if "/assign" not in op.name] fwd_ops = [op for op in fwd_ops if "/Assign" not in op.name] fwd_ops = [op for op in fwd_ops if "/read" not in op.name] logging.debug("fwd_ops: %s", len(fwd_ops)) ts_all = ge.filter_ts(fwd_ops, True) # get the tensors logging.debug("ts_all: %s", len(ts_all)) ts_all = [t for t in ts_all if "/read" not in t.name] ts_all = set(ts_all) - set(xs) - set(ys) logging.debug("ts_all: %s", len(ts_all)) # construct list of tensors to checkpoint during forward pass, if not # given as input if not isinstance(checkpoints, list): if checkpoints == "collection": checkpoints = tf.get_collection("checkpoints") elif checkpoints == "speed": # checkpoint all expensive ops to maximize running speed checkpoints = ge.filter_ts_from_regex(fwd_ops, "conv2d|Conv|MatMul") elif checkpoints == "memory": # remove very small tensors and some weird ops def fixdims( t ): # tf.Dimension values are not compatible with int, convert manually try: return [int(e if e is not None else 64) for e in t.as_list()] except ValueError as e: logging.exception("%s", e) logging.exception("unknown shape %s", t) return [0] # unknown shape ts_all = [ t for t in ts_all if np.prod(fixdims(t.shape)) > MIN_CHECKPOINT_NODE_SIZE # if (tf.size(t) > MIN_CHECKPOINT_NODE_SIZE) ] logging.debug("ts_all: %s", len(ts_all)) ts_all = [t for t in ts_all if "L2Loss" not in t.name] ts_all = [t for t in ts_all if "entropy" not in t.name] ts_all = [t for t in ts_all if "FusedBatchNorm" not in t.name] ts_all = [t for t in ts_all if "Switch" not in t.name] ts_all = [t for t in ts_all if "dropout" not in t.name] # DV: FP16_FIX - need to add 'Cast' layer here to make it work for FP16 ts_all = [t for t in ts_all if "Cast" not in t.name] logging.debug("ts_all: %s", len(ts_all)) # filter out all tensors that are inputs of the backward graph with capture_ops() as bwd_ops: tf_gradients(ys, xs, grad_ys, **kwargs) bwd_inputs = [t for op in bwd_ops for t in op.inputs] # list of tensors in forward graph that is in input to bwd graph ts_filtered = list(set(bwd_inputs).intersection(ts_all)) debug_print("Using tensors %s", ts_filtered) # try two slightly different ways of getting bottlenecks tensors # to checkpoint logging.debug("len(ts_filtered): %s", len(ts_filtered)) logging.debug("len(ts_all) %s", len(ts_all)) for ts in [ts_filtered, ts_all]: # get all bottlenecks in the graph bottleneck_ts = [] for t in ts: b = set( ge.get_backward_walk_ops( t.op, inclusive=True, within_ops=fwd_ops)) f = set( ge.get_forward_walk_ops( t.op, inclusive=False, within_ops=fwd_ops)) # check that there are no shortcuts b_inp = {inp for op in b for inp in op.inputs}.intersection(ts_all) f_inp = {inp for op in f for inp in op.inputs}.intersection(ts_all) if not set(b_inp).intersection( f_inp) and len(b_inp) + len(f_inp) >= len(ts_all): bottleneck_ts.append(t) # we have a bottleneck! else: logging.debug("Rejected bottleneck candidate and ops %s %d", [t], len(b_inp) + len(f_inp) - len(ts_all)) # success? or try again without filtering? if len(bottleneck_ts) >= np.sqrt( len(ts_filtered)): # yes, enough bottlenecks found! break # bottleneck_ts = [t for t in ts_all if 'Add' in t.name] # logging.debug("Add only ts_all: %s", len(bottleneck_ts)) if not bottleneck_ts: raise Exception( "unable to find bottleneck tensors! please provide checkpoint " 'nodes manually, or use checkpoints="speed" or a list of strings.') logging.debug("len(bottleneck_ts): %s", len(bottleneck_ts)) # sort the bottlenecks bottlenecks_sorted_lists = tf_toposort(bottleneck_ts, within_ops=fwd_ops) sorted_bottlenecks = [t for ts in bottlenecks_sorted_lists for t in ts] # save an approximately optimal number ~ sqrt(N) n_filtered = len(ts_filtered) if len(bottleneck_ts) <= np.ceil(np.sqrt(n_filtered)): checkpoints = sorted_bottlenecks else: step = int(np.ceil(len(bottleneck_ts) / np.sqrt(n_filtered))) checkpoints = sorted_bottlenecks[step::step] else: raise Exception('%s is unsupported input for "checkpoints"' % (checkpoints,)) else: # exclude some layers as was done in the original bottleneck searching # algorithm for excl_layer in [ "L2Loss", "entropy", "FusedBatchNorm", "Switch", "dropout", "Cast" ]: ts_all = [t for t in ts_all if excl_layer not in t.name] logging.info("Excluding %s from ts_all: %d", excl_layer, len(ts_all)) # leave only layers that match strings in checkpoints list ts_all = [ t for t in ts_all if any(partial_match in t.name for partial_match in checkpoints) ] logging.info("Leaving only %s in ts_all: %d", checkpoints, len(ts_all)) checkpoints = ts_all.copy() checkpoints = list(set(checkpoints).intersection(ts_all)) # at this point selection happened and checkpoints is list of nodes # assert isinstance(checkpoints, list) # TODO(nikzak): implement multithreading in graph recomputation logging.info("Checkpoint nodes used: %s", len(checkpoints)) # better error handling of special cases # xs are already handled as checkpoint nodes, so no need to include them xs_intersect_checkpoints = set(xs).intersection(set(checkpoints)) if xs_intersect_checkpoints: debug_print("Warning, some input nodes are also checkpoint nodes: %s", xs_intersect_checkpoints) ys_intersect_checkpoints = set(ys).intersection(set(checkpoints)) debug_print("ys: %s, checkpoints: %s, intersect: %s", ys, checkpoints, ys_intersect_checkpoints) # saving an output node (ys) gives no benefit in memory while creating # new edge cases, exclude them if ys_intersect_checkpoints: debug_print("Warning, some output nodes are also checkpoints nodes: %s", format_ops(ys_intersect_checkpoints)) # remove initial and terminal nodes from checkpoints list if present checkpoints = list(set(checkpoints) - set(ys) - set(xs)) logging.info("Pruned initial and terminal nodes. Leaving %d", len(checkpoints)) # check that we have some nodes to checkpoint if not checkpoints: raise Exception("no checkpoints nodes found or given as input! ") # disconnect dependencies between checkpointed tensors checkpoints_disconnected = {} for x in checkpoints: if x.op and x.op.name is not None: grad_node = tf.stop_gradient(x, name=x.op.name + "_sg") else: grad_node = tf.stop_gradient(x) grad_node.op._set_device(x.op.node_def.device) checkpoints_disconnected[x] = grad_node # partial derivatives to the checkpointed tensors and xs ops_to_copy = fast_backward_ops( seed_ops=[y.op for y in ys], stop_at_ts=checkpoints, within_ops=fwd_ops) debug_print("Found %s ops to copy within fwd_ops %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ys], checkpoints) debug_print("ops_to_copy = %s", ops_to_copy) debug_print("Processing list %s", ys) _, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts( checkpoints_disconnected.values(), checkpoints_disconnected.keys(), can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected.values(), checkpoints_disconnected.keys(), copied_ops) # get gradients with respect to current boundary + original x's copied_ys = [info._transformed_ops[y.op]._outputs[0] for y in ys] boundary = list(checkpoints_disconnected.values()) dv = tf_gradients(ys=copied_ys, xs=boundary + xs, grad_ys=grad_ys, **kwargs) debug_print("Got gradients %s", dv) debug_print("for %s", copied_ys) debug_print("with respect to %s", boundary + xs) inputs_to_do_before = [y.op for y in ys] if grad_ys is not None: inputs_to_do_before += grad_ys wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None] my_add_control_inputs(wait_to_do_ops, inputs_to_do_before) # partial derivatives to the checkpointed nodes # dictionary of "node: backprop" for nodes in the boundary d_checkpoints = dict( zip(checkpoints_disconnected.keys(), dv[:len(checkpoints_disconnected)])) # partial derivatives to xs (usually the params of the neural net) d_xs = dv[len(checkpoints_disconnected):] # incorporate derivatives flowing through the checkpointed nodes logging.info("Sorting nodes topologically") checkpoints_sorted_lists = tf_toposort(checkpoints, within_ops=fwd_ops) logging.info("Rebuilding graph with %d checkpoints", len(checkpoints_sorted_lists)) for index, ts in enumerate(checkpoints_sorted_lists[::-1]): if index % 50 == 0: logging.info("Processed %d nodes", index) debug_print("Processing list %s", ts) checkpoints_other = [r for r in checkpoints if r not in ts] checkpoints_disconnected_other = [ checkpoints_disconnected[r] for r in checkpoints_other ] # copy part of the graph below current checkpoint node, stopping at # other checkpoints nodes ops_to_copy = fast_backward_ops( within_ops=fwd_ops, seed_ops=[r.op for r in ts], stop_at_ts=checkpoints_other) debug_print("Found %s ops to copy within %s, seed %s, stop_at %s", len(ops_to_copy), fwd_ops, [r.op for r in ts], checkpoints_other) debug_print("ops_to_copy = %s", ops_to_copy) if not ops_to_copy: # we're done! break _, info = ge.copy_with_input_replacements(ge.sgv(ops_to_copy), {}) for origin_op, op in info._transformed_ops.items(): op._set_device(origin_op.node_def.device) copied_ops = info._transformed_ops.values() debug_print("Copied %s to %s", ops_to_copy, copied_ops) ge.reroute_ts( checkpoints_disconnected_other, checkpoints_other, can_modify=copied_ops) debug_print("Rewired %s in place of %s restricted to %s", checkpoints_disconnected_other, checkpoints_other, copied_ops) # gradient flowing through the checkpointed node boundary = [info._transformed_ops[r.op]._outputs[0] for r in ts] substitute_backprops = [d_checkpoints[r] for r in ts] dv = tf_gradients( boundary, checkpoints_disconnected_other + xs, grad_ys=substitute_backprops, **kwargs) debug_print("Got gradients %s", dv) debug_print("for %s", boundary) debug_print("with respect to %s", checkpoints_disconnected_other + xs) debug_print("with boundary backprop substitutions %s", substitute_backprops) inputs_to_do_before = [d_checkpoints[r].op for r in ts] wait_to_do_ops = list(copied_ops) + [g.op for g in dv if g is not None] my_add_control_inputs(wait_to_do_ops, inputs_to_do_before) # partial derivatives to the checkpointed nodes for r, dr in zip(checkpoints_other, dv[:len(checkpoints_other)]): if dr is not None: if d_checkpoints[r] is None: d_checkpoints[r] = dr else: d_checkpoints[r] += dr def _unsparsify(x): if not isinstance(x, tf.IndexedSlices): return x if x.dense_shape is None: raise ValueError( "memory_saving_gradients has sparse gradients of unknown shape.") indices = x.indices while indices.shape.ndims < x.values.shape.ndims: indices = tf.expand_dims(indices, -1) return tf.scatter_nd(indices, x.values, x.dense_shape) # partial derivatives to xs (usually the params of the neural net) d_xs_new = dv[len(checkpoints_other):] for j in range(len(xs)): if d_xs_new[j] is not None: if d_xs[j] is None: d_xs[j] = _unsparsify(d_xs_new[j]) else: d_xs[j] += _unsparsify(d_xs_new[j]) return d_xs
def test_compatibility(self): """Test compatibility.""" with self.assertRaises(ValueError): ge.reroute_ts([self.a0, self.b0], [self.a2, self.b2])