コード例 #1
0
    def testFitSine(self):
        # High frequency sine wave.
        all_time = [np.arange(0, 100, 0.1), np.arange(100, 200, 0.1)]
        all_flux = [np.sin(t) for t in all_time]

        # Logarithmically sample candidate break point spacings.
        bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

        def _rmse(all_flux, all_spline):
            f = np.concatenate(all_flux)
            s = np.concatenate(all_spline)
            return np.sqrt(np.mean((f - s)**2))

        # Penalty coefficient 1.0.
        spline, metadata = kepler_spline.choose_kepler_spline(
            all_time, all_flux, bkspaces, penalty_coeff=1.0)
        self.assertAlmostEqual(_rmse(all_flux, spline), 0.013013)
        self.assertTrue(np.all(metadata.light_curve_mask))
        self.assertAlmostEqual(metadata.bkspace, 1.67990914314)
        self.assertEmpty(metadata.bad_bkspaces)
        self.assertAlmostEqual(metadata.likelihood_term, -6685.64217856480)
        self.assertAlmostEqual(metadata.penalty_term, 942.51190498322)
        self.assertAlmostEqual(metadata.bic, -5743.13027358158)

        # Decrease penalty coefficient; allow smaller spacing for closer fit.
        spline, metadata = kepler_spline.choose_kepler_spline(
            all_time, all_flux, bkspaces, penalty_coeff=0.1)
        self.assertAlmostEqual(_rmse(all_flux, spline), 0.0066376)
        self.assertTrue(np.all(metadata.light_curve_mask))
        self.assertAlmostEqual(metadata.bkspace, 1.48817572082)
        self.assertEmpty(metadata.bad_bkspaces)
        self.assertAlmostEqual(metadata.likelihood_term, -6731.59913975551)
        self.assertAlmostEqual(metadata.penalty_term, 1064.12634433589)
        self.assertAlmostEqual(metadata.bic, -6625.18650532192)

        # Increase penalty coefficient; require larger spacing at the cost of worse
        # fit.
        spline, metadata = kepler_spline.choose_kepler_spline(all_time,
                                                              all_flux,
                                                              bkspaces,
                                                              penalty_coeff=2)
        self.assertAlmostEqual(_rmse(all_flux, spline), 0.026215449)
        self.assertTrue(np.all(metadata.light_curve_mask))
        self.assertAlmostEqual(metadata.bkspace, 1.89634509537)
        self.assertEmpty(metadata.bad_bkspaces)
        self.assertAlmostEqual(metadata.likelihood_term, -6495.65564287904)
        self.assertAlmostEqual(metadata.penalty_term, 836.099270549629)
        self.assertAlmostEqual(metadata.bic, -4823.45710177978)
コード例 #2
0
def read_and_process_light_curve(kepid, kepler_data_dir, max_gap_width=0.75):
  """Reads a light curve, fits a B-spline and divides the curve by the spline.

  Args:
    kepid: Kepler id of the target star.
    kepler_data_dir: Base directory containing Kepler data. See
        kepler_io.kepler_filenames().
    max_gap_width: Gap size (in days) above which the light curve is split for
        the fitting of B-splines.

  Returns:
    time: 1D NumPy array; the time values of the light curve.
    flux: 1D NumPy array; the normalized flux values of the light curve.

  Raises:
    IOError: If the light curve files for this Kepler ID cannot be found.
    ValueError: If the spline could not be fit.
  """
  # Read the Kepler light curve.
  file_names = kepler_io.kepler_filenames(kepler_data_dir, kepid)
  if not file_names:
    raise IOError("Failed to find .fits files in %s for Kepler ID %s" %
                  (kepler_data_dir, kepid))

  all_time, all_flux = kepler_io.read_kepler_light_curve(file_names)

  # Split on gaps.
  all_time, all_flux = util.split(all_time, all_flux, gap_width=max_gap_width)

  # Logarithmically sample candidate break point spacings between 0.5 and 20
  # days.
  bkspaces = np.logspace(np.log10(0.5), np.log10(20), num=20)

  # Generate spline.
  spline = kepler_spline.choose_kepler_spline(
      all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)[0]

  if spline is None:
    raise ValueError("Failed to fit spline with Kepler ID %s", kepid)

  # Concatenate the piecewise light curve and spline.
  time = np.concatenate(all_time)
  flux = np.concatenate(all_flux)
  spline = np.concatenate(spline)

  # In rare cases the piecewise spline contains NaNs in places the spline could
  # not be fit. We can't normalize those points if the spline isn't defined
  # there. Instead we just remove them.
  finite_i = np.isfinite(spline)
  if not np.all(finite_i):
    tf.logging.warn("Incomplete spline with Kepler ID %s", kepid)
    time = time[finite_i]
    flux = flux[finite_i]
    spline = spline[finite_i]

  # "Flatten" the light curve (remove low-frequency variability) by dividing by
  # the spline.
  flux /= spline

  return time, flux
コード例 #3
0
  def testFitSine(self):
    # High frequency sine wave.
    all_time = [np.arange(0, 100, 0.1), np.arange(100, 200, 0.1)]
    all_flux = [np.sin(t) for t in all_time]

    # Logarithmically sample candidate break point spacings.
    bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

    def _rmse(all_flux, all_spline):
      f = np.concatenate(all_flux)
      s = np.concatenate(all_spline)
      return np.sqrt(np.mean((f - s)**2))

    # Penalty coefficient 1.0.
    spline, metadata = kepler_spline.choose_kepler_spline(
        all_time, all_flux, bkspaces, penalty_coeff=1.0)
    self.assertAlmostEqual(_rmse(all_flux, spline), 0.013013)
    self.assertTrue(np.all(metadata.light_curve_mask))
    self.assertAlmostEqual(metadata.bkspace, 1.67990914314)
    self.assertEmpty(metadata.bad_bkspaces)
    self.assertAlmostEqual(metadata.likelihood_term, -6685.64217856480)
    self.assertAlmostEqual(metadata.penalty_term, 942.51190498322)
    self.assertAlmostEqual(metadata.bic, -5743.13027358158)

    # Decrease penalty coefficient; allow smaller spacing for closer fit.
    spline, metadata = kepler_spline.choose_kepler_spline(
        all_time, all_flux, bkspaces, penalty_coeff=0.1)
    self.assertAlmostEqual(_rmse(all_flux, spline), 0.0066376)
    self.assertTrue(np.all(metadata.light_curve_mask))
    self.assertAlmostEqual(metadata.bkspace, 1.48817572082)
    self.assertEmpty(metadata.bad_bkspaces)
    self.assertAlmostEqual(metadata.likelihood_term, -6731.59913975551)
    self.assertAlmostEqual(metadata.penalty_term, 1064.12634433589)
    self.assertAlmostEqual(metadata.bic, -6625.18650532192)

    # Increase penalty coefficient; require larger spacing at the cost of worse
    # fit.
    spline, metadata = kepler_spline.choose_kepler_spline(
        all_time, all_flux, bkspaces, penalty_coeff=2)
    self.assertAlmostEqual(_rmse(all_flux, spline), 0.026215449)
    self.assertTrue(np.all(metadata.light_curve_mask))
    self.assertAlmostEqual(metadata.bkspace, 1.89634509537)
    self.assertEmpty(metadata.bad_bkspaces)
    self.assertAlmostEqual(metadata.likelihood_term, -6495.65564287904)
    self.assertAlmostEqual(metadata.penalty_term, 836.099270549629)
    self.assertAlmostEqual(metadata.bic, -4823.45710177978)
コード例 #4
0
    def testTooFewPoints(self):
        # Sine wave with segments of 1, 2, 3 points.
        all_time = [
            np.array([0.1]),
            np.array([0.2, 0.3]),
            np.array([0.4, 0.5, 0.6])
        ]
        all_flux = [np.sin(t) for t in all_time]

        # Logarithmically sample candidate break point spacings.
        bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

        spline, metadata = kepler_spline.choose_kepler_spline(
            all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)

        # All segments are NaN.
        self.assertTrue(np.all(np.isnan(np.concatenate(spline))))
        self.assertFalse(np.any(np.concatenate(metadata.light_curve_mask)))
        self.assertIsNone(metadata.bkspace)
        self.assertEmpty(metadata.bad_bkspaces)
        self.assertIsNone(metadata.likelihood_term)
        self.assertIsNone(metadata.penalty_term)
        self.assertIsNone(metadata.bic)

        # Add a longer segment.
        all_time.append(np.arange(0.7, 2.0, 0.1))
        all_flux.append(np.sin(all_time[-1]))

        spline, metadata = kepler_spline.choose_kepler_spline(
            all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)

        # First 3 segments are NaN.
        for i in range(3):
            self.assertTrue(np.all(np.isnan(spline[i])))
            self.assertFalse(np.any(metadata.light_curve_mask[i]))

        # Final segment is a good fit.
        self.assertTrue(np.all(np.isfinite(spline[3])))
        self.assertTrue(np.all(metadata.light_curve_mask[3]))
        self.assertEmpty(metadata.bad_bkspaces)
        self.assertAlmostEqual(metadata.likelihood_term, -58.0794069927957)
        self.assertAlmostEqual(metadata.penalty_term, 7.69484807238461)
        self.assertAlmostEqual(metadata.bic, -50.3845589204111)
コード例 #5
0
  def testTooFewPoints(self):
    # Sine wave with segments of 1, 2, 3 points.
    all_time = [
        np.array([0.1]),
        np.array([0.2, 0.3]),
        np.array([0.4, 0.5, 0.6])
    ]
    all_flux = [np.sin(t) for t in all_time]

    # Logarithmically sample candidate break point spacings.
    bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

    spline, metadata = kepler_spline.choose_kepler_spline(
        all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)

    # All segments are NaN.
    self.assertTrue(np.all(np.isnan(np.concatenate(spline))))
    self.assertFalse(np.any(np.concatenate(metadata.light_curve_mask)))
    self.assertIsNone(metadata.bkspace)
    self.assertEmpty(metadata.bad_bkspaces)
    self.assertIsNone(metadata.likelihood_term)
    self.assertIsNone(metadata.penalty_term)
    self.assertIsNone(metadata.bic)

    # Add a longer segment.
    all_time.append(np.arange(0.7, 2.0, 0.1))
    all_flux.append(np.sin(all_time[-1]))

    spline, metadata = kepler_spline.choose_kepler_spline(
        all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)

    # First 3 segments are NaN.
    for i in range(3):
      self.assertTrue(np.all(np.isnan(spline[i])))
      self.assertFalse(np.any(metadata.light_curve_mask[i]))

    # Final segment is a good fit.
    self.assertTrue(np.all(np.isfinite(spline[3])))
    self.assertTrue(np.all(metadata.light_curve_mask[3]))
    self.assertEmpty(metadata.bad_bkspaces)
    self.assertAlmostEqual(metadata.likelihood_term, -58.0794069927957)
    self.assertAlmostEqual(metadata.penalty_term, 7.69484807238461)
    self.assertAlmostEqual(metadata.bic, -50.3845589204111)
コード例 #6
0
    def testNoPoints(self):
        all_time = [np.array([])]
        all_flux = [np.array([])]

        # Logarithmically sample candidate break point spacings.
        bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

        spline, metadata = kepler_spline.choose_kepler_spline(
            all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)
        np.testing.assert_array_equal(spline, [[]])
        np.testing.assert_array_equal(metadata.light_curve_mask, [[]])
コード例 #7
0
  def testNoPoints(self):
    all_time = [np.array([])]
    all_flux = [np.array([])]

    # Logarithmically sample candidate break point spacings.
    bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

    spline, metadata = kepler_spline.choose_kepler_spline(
        all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)
    np.testing.assert_array_equal(spline, [[]])
    np.testing.assert_array_equal(metadata.light_curve_mask, [[]])
  def testChooseKeplerSpline(self):
    # High frequency sine wave.
    time = [np.arange(0, 100, 0.1), np.arange(100, 200, 0.1)]
    flux = [np.sin(t) for t in time]

    # Logarithmically sample candidate break point spacings.
    bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

    def _rmse(all_flux, all_spline):
      f = np.concatenate(all_flux)
      s = np.concatenate(all_spline)
      return np.sqrt(np.mean((f - s)**2))

    # Penalty coefficient 1.0.
    spline, mask, bkspace, bad_bkspaces = kepler_spline.choose_kepler_spline(
        time, flux, bkspaces, penalty_coeff=1.0)
    self.assertAlmostEqual(_rmse(flux, spline), 0.013013)
    self.assertTrue(np.all(mask))
    self.assertAlmostEqual(bkspace, 1.67990914314)
    self.assertEmpty(bad_bkspaces)

    # Decrease penalty coefficient; allow smaller spacing for closer fit.
    spline, mask, bkspace, bad_bkspaces = kepler_spline.choose_kepler_spline(
        time, flux, bkspaces, penalty_coeff=0.1)
    self.assertAlmostEqual(_rmse(flux, spline), 0.0066376)
    self.assertTrue(np.all(mask))
    self.assertAlmostEqual(bkspace, 1.48817572082)
    self.assertEmpty(bad_bkspaces)

    # Increase penalty coefficient; require larger spacing at the cost of worse
    # fit.
    spline, mask, bkspace, bad_bkspaces = kepler_spline.choose_kepler_spline(
        time, flux, bkspaces, penalty_coeff=2)
    self.assertAlmostEqual(_rmse(flux, spline), 0.026215449)
    self.assertTrue(np.all(mask))
    self.assertAlmostEqual(bkspace, 1.89634509537)
    self.assertEmpty(bad_bkspaces)
コード例 #9
0
  def testChooseKeplerSpline(self):
    # High frequency sine wave.
    time = [np.arange(0, 100, 0.1), np.arange(100, 200, 0.1)]
    flux = [np.sin(t) for t in time]

    # Logarithmically sample candidate break point spacings.
    bkspaces = np.logspace(np.log10(0.5), np.log10(5), num=20)

    def _rmse(all_flux, all_spline):
      f = np.concatenate(all_flux)
      s = np.concatenate(all_spline)
      return np.sqrt(np.mean((f - s)**2))

    # Penalty coefficient 1.0.
    spline, mask, bkspace, bad_bkspaces = kepler_spline.choose_kepler_spline(
        time, flux, bkspaces, penalty_coeff=1.0)
    self.assertAlmostEqual(_rmse(flux, spline), 0.013013)
    self.assertTrue(np.all(mask))
    self.assertAlmostEqual(bkspace, 1.67990914314)
    self.assertEmpty(bad_bkspaces)

    # Decrease penalty coefficient; allow smaller spacing for closer fit.
    spline, mask, bkspace, bad_bkspaces = kepler_spline.choose_kepler_spline(
        time, flux, bkspaces, penalty_coeff=0.1)
    self.assertAlmostEqual(_rmse(flux, spline), 0.0066376)
    self.assertTrue(np.all(mask))
    self.assertAlmostEqual(bkspace, 1.48817572082)
    self.assertEmpty(bad_bkspaces)

    # Increase penalty coefficient; require larger spacing at the cost of worse
    # fit.
    spline, mask, bkspace, bad_bkspaces = kepler_spline.choose_kepler_spline(
        time, flux, bkspaces, penalty_coeff=2)
    self.assertAlmostEqual(_rmse(flux, spline), 0.026215449)
    self.assertTrue(np.all(mask))
    self.assertAlmostEqual(bkspace, 1.89634509537)
    self.assertEmpty(bad_bkspaces)
コード例 #10
0
def read_and_process_light_curve(kepid, kepler_data_dir, campaign, max_gap_width=0.75):
  """Reads a light curve, fits a B-spline and divides the curve by the spline.

  Args:
    kepid: Kepler id of the target star.
    kepler_data_dir: Base directory containing Kepler data. See
        kepler_io.kepler_filenames().
    campaign: K2 campaign where data was taken.
    max_gap_width: Gap size (in days) above which the light curve is split for
        the fitting of B-splines.

  Returns:
    time: 1D NumPy array; the time values of the light curve.
    flux: 1D NumPy array; the normalized flux values of the light curve.

  Raises:
    IOError: If the light curve files for this Kepler ID cannot be found.
    ValueError: If the spline could not be fit.
  """
  # Read the Kepler light curve.
  file_names = kepler_io.kepler_filenames(kepler_data_dir, kepid, campaign)
  if not file_names:
    print(campaign)
    raise IOError("Failed to find .idl file in %s for EPIC ID %s" %
                  (kepler_data_dir, kepid))

  all_time, all_flux = kepler_io.read_kepler_light_curve(file_names)

  # Split on gaps.
  all_time, all_flux = util.split(all_time, all_flux, gap_width=max_gap_width)

  # Logarithmically sample candidate break point spacings between 0.5 and 20
  # days.
  bkspaces = np.logspace(np.log10(0.5), np.log10(20), num=20)

  # Generate spline.
  spline = kepler_spline.choose_kepler_spline(
      all_time, all_flux, bkspaces, penalty_coeff=1.0, verbose=False)[0]

  if spline is None:
    raise ValueError("Failed to fit spline with Kepler ID %s", kepid)

  # Concatenate the piecewise light curve and spline.
  time = np.concatenate(all_time)
  flux = np.concatenate(all_flux)
  spline = np.concatenate(spline)

  # In rare cases the piecewise spline contains NaNs in places the spline could
  # not be fit. We can't normalize those points if the spline isn't defined
  # there. Instead we just remove them.
  finite_i = np.isfinite(spline)
  if not np.all(finite_i):
    tf.logging.warn("Incomplete spline with Kepler ID %s", kepid)
    time = time[finite_i]
    flux = flux[finite_i]
    spline = spline[finite_i]

  # "Flatten" the light curve (remove low-frequency variability) by dividing by
  # the spline.
  flux /= spline

  #Remove points where the thrusters are on
  #using s.data.moving

  #Remove points where the xcenter is off
  #using.s.data.xc

  #Remove points where the background flux is off
  #using s.data.medians

  #Let's remove upward outliers?
  deviation = flux - np.median(flux)
  is_upward_outlier = np.logical_not(robust_mean.robust_mean(deviation, cut=3)[2])
  np.logical_and(is_upward_outlier, deviation > 0, out=is_upward_outlier)

  flux = flux[~is_upward_outlier]
  time = time[~is_upward_outlier]

  return time, flux
コード例 #11
0
def read_and_process_light_curve(kepid, kepler_data_dir, max_gap_width=0.75):
    """Reads a light curve, fits a B-spline and divides the curve by the spline.

  Args:
    kepid: Kepler id of the target star.
    kepler_data_dir: Base directory containing Kepler data. See
        kepler_io.kepler_filenames().
    max_gap_width: Gap size (in days) above which the light curve is split for
        the fitting of B-splines.

  Returns:
    time: 1D NumPy array; the time values of the light curve.
    flux: 1D NumPy array; the normalized flux values of the light curve.

  Raises:
    IOError: If the light curve files for this Kepler ID cannot be found.
    ValueError: If the spline could not be fit.
  """
    # Read the Kepler light curve.
    file_names = kepler_io.kepler_filenames(kepler_data_dir, kepid)
    if not file_names:
        raise IOError("Failed to find .fits files in %s for Kepler ID %s" %
                      (kepler_data_dir, kepid))

    all_time, all_flux = kepler_io.read_kepler_light_curve(file_names)

    # Split on gaps.
    all_time, all_flux = util.split(all_time,
                                    all_flux,
                                    gap_width=max_gap_width)

    # Logarithmically sample candidate break point spacings between 0.5 and 20
    # days.
    bkspaces = np.logspace(np.log10(0.5), np.log10(20), num=20)

    # Generate spline.
    spline = kepler_spline.choose_kepler_spline(all_time,
                                                all_flux,
                                                bkspaces,
                                                penalty_coeff=1.0,
                                                verbose=False)[0]

    if spline is None:
        raise ValueError("Failed to fit spline with Kepler ID %s", kepid)

    # Concatenate the piecewise light curve and spline.
    time = np.concatenate(all_time)
    flux = np.concatenate(all_flux)
    spline = np.concatenate(spline)

    # In rare cases the piecewise spline contains NaNs in places the spline could
    # not be fit. We can't normalize those points if the spline isn't defined
    # there. Instead we just remove them.
    finite_i = np.isfinite(spline)
    if not np.all(finite_i):
        tf.logging.warn("Incomplete spline with Kepler ID %s", kepid)
        time = time[finite_i]
        flux = flux[finite_i]
        spline = spline[finite_i]

    # "Flatten" the light curve (remove low-frequency variability) by dividing by
    # the spline.
    flux /= spline

    return time, flux