def __init__(self, modelFile, var='X'): if isinstance(modelFile, basestring): x = loadMatVar(modelFile, var) else: x = modelFile x = concatenate((ones((1, shape(x)[1])), x)) xHat = pinv(x) self.x = x self.xHat = xHat
def __init__(self, modelfile, var='X'): if type(modelfile) is str: x = loadmatvar(modelfile, var) else: x = modelfile x = concatenate((ones((1, shape(x)[1])), x)) x_hat = pinv(x) self.x = x self.x_hat = x_hat
def __init__(self, modelFile, var=('X1', 'X2')): if isinstance(modelFile, basestring): x1 = loadMatVar(modelFile[0], var[0]) x2 = loadMatVar(modelFile[1], var[1]) else: x1 = modelFile[0] x2 = modelFile[1] x1Hat = pinv(x1) self.x1 = x1 self.x2 = x2 self.x1Hat = x1Hat
def __init__(self, modelfile, var=('X1', 'X2')): if type(modelfile) is str: x1 = loadmatvar(modelfile[0], var[0]) x2 = loadmatvar(modelfile[1], var[1]) else: x1 = modelfile[0] x2 = modelfile[1] x1_hat = pinv(x1) self.x1 = x1 self.x2 = x2 self.x1_hat = x1_hat
def get(self, y): """Compute regression coefficients from the second design matrix, a single r2 statistic, and residuals for the full model""" b1 = dot(self.x1Hat, y) b1 = b1 - min(b1) b1Hat = dot(transpose(self.x1), b1) if sum(b1Hat) == 0: b1Hat += 1E-06 x3 = self.x2 * b1Hat x3 = concatenate((ones((1, shape(x3)[1])), x3)) x3Hat = pinv(x3) b2 = dot(x3Hat, y) predic = dot(b2, x3) resid = y - predic sse = sum((predic - y)**2) sst = sum((y - mean(y))**2) if sst == 0: r2 = 0 else: r2 = 1 - sse / sst return asarray([b2[1:], r2, resid])
def get(self, y): """Compute regression coefficients from the second design matrix, a single r2 statistic, and residuals for the full model""" b1 = dot(self.x1Hat, y) b1 = b1 - min(b1) b1Hat = dot(transpose(self.x1), b1) if sum(b1Hat) == 0: b1Hat += 1E-06 x3 = self.x2 * b1Hat x3 = concatenate((ones((1, shape(x3)[1])), x3)) x3Hat = pinv(x3) b2 = dot(x3Hat, y) predic = dot(b2, x3) resid = y - predic sse = sum((predic - y) ** 2) sst = sum((y - mean(y)) ** 2) if sst == 0: r2 = 0 else: r2 = 1 - sse / sst return asarray([b2[1:], r2, resid])