コード例 #1
0
def test_sac_with_il(args=get_args()):
    torch.set_num_threads(1)  # we just need only one thread for NN
    env = gym.make(args.task)
    if args.task == 'Pendulum-v0':
        env.spec.reward_threshold = -250
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    # you can also use tianshou.env.SubprocVectorEnv
    # train_envs = gym.make(args.task)
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.state_shape,
              hidden_sizes=args.hidden_sizes,
              device=args.device)
    actor = ActorProb(net,
                      args.action_shape,
                      max_action=args.max_action,
                      device=args.device,
                      unbounded=True).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c1 = Net(args.state_shape,
                 args.action_shape,
                 hidden_sizes=args.hidden_sizes,
                 concat=True,
                 device=args.device)
    critic1 = Critic(net_c1, device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    net_c2 = Net(args.state_shape,
                 args.action_shape,
                 hidden_sizes=args.hidden_sizes,
                 concat=True,
                 device=args.device)
    critic2 = Critic(net_c2, device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
    policy = SACPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        action_range=[env.action_space.low[0], env.action_space.high[0]],
        tau=args.tau,
        gamma=args.gamma,
        alpha=args.alpha,
        reward_normalization=args.rew_norm,
        estimation_step=args.n_step)
    # collector
    train_collector = Collector(policy,
                                train_envs,
                                VectorReplayBuffer(args.buffer_size,
                                                   len(train_envs)),
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac')
    writer = SummaryWriter(log_path)
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               update_per_step=args.update_per_step,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               logger=logger)
    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        policy.eval()
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")

    # here we define an imitation collector with a trivial policy
    policy.eval()
    if args.task == 'Pendulum-v0':
        env.spec.reward_threshold = -300  # lower the goal
    net = Actor(Net(args.state_shape,
                    hidden_sizes=args.imitation_hidden_sizes,
                    device=args.device),
                args.action_shape,
                max_action=args.max_action,
                device=args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
    il_policy = ImitationPolicy(net, optim, mode='continuous')
    il_test_collector = Collector(
        il_policy,
        DummyVectorEnv(
            [lambda: gym.make(args.task) for _ in range(args.test_num)]))
    train_collector.reset()
    result = offpolicy_trainer(il_policy,
                               train_collector,
                               il_test_collector,
                               args.epoch,
                               args.il_step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               logger=logger)
    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        il_policy.eval()
        collector = Collector(il_policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
コード例 #2
0
def test_a2c_with_il(args=get_args()):
    torch.set_num_threads(1)  # for poor CPU
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # you can also use tianshou.env.SubprocVectorEnv
    # train_envs = gym.make(args.task)
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num, args.state_shape, device=args.device)
    actor = Actor(net, args.action_shape).to(args.device)
    critic = Critic(net).to(args.device)
    optim = torch.optim.Adam(list(actor.parameters()) +
                             list(critic.parameters()),
                             lr=args.lr)
    dist = torch.distributions.Categorical
    policy = A2CPolicy(actor,
                       critic,
                       optim,
                       dist,
                       args.gamma,
                       gae_lambda=args.gae_lambda,
                       vf_coef=args.vf_coef,
                       ent_coef=args.ent_coef,
                       max_grad_norm=args.max_grad_norm,
                       reward_normalization=args.rew_norm)
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # log
    log_path = os.path.join(args.logdir, args.task, 'a2c')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    result = onpolicy_trainer(policy,
                              train_collector,
                              test_collector,
                              args.epoch,
                              args.step_per_epoch,
                              args.collect_per_step,
                              args.repeat_per_collect,
                              args.test_num,
                              args.batch_size,
                              stop_fn=stop_fn,
                              save_fn=save_fn,
                              writer=writer)
    assert stop_fn(result['best_reward'])
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()

    # here we define an imitation collector with a trivial policy
    if args.task == 'CartPole-v0':
        env.spec.reward_threshold = 190  # lower the goal
    net = Net(1, args.state_shape, device=args.device)
    net = Actor(net, args.action_shape).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
    il_policy = ImitationPolicy(net, optim, mode='discrete')
    il_test_collector = Collector(il_policy, test_envs)
    train_collector.reset()
    result = offpolicy_trainer(il_policy,
                               train_collector,
                               il_test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer)
    assert stop_fn(result['best_reward'])
    train_collector.close()
    il_test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(il_policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
コード例 #3
0
def test_sac_with_il(args=get_args()):
    # if you want to use python vector env, please refer to other test scripts
    train_envs = env = envpool.make_gym(
        args.task, num_envs=args.training_num, seed=args.seed
    )
    test_envs = envpool.make_gym(args.task, num_envs=args.test_num, seed=args.seed)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    if args.reward_threshold is None:
        default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
        args.reward_threshold = default_reward_threshold.get(
            args.task, env.spec.reward_threshold
        )
    # you can also use tianshou.env.SubprocVectorEnv
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    # model
    net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
    actor = ActorProb(
        net,
        args.action_shape,
        max_action=args.max_action,
        device=args.device,
        unbounded=True
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c1 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device
    )
    critic1 = Critic(net_c1, device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    net_c2 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device
    )
    critic2 = Critic(net_c2, device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = SACPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        tau=args.tau,
        gamma=args.gamma,
        alpha=args.alpha,
        reward_normalization=args.rew_norm,
        estimation_step=args.n_step,
        action_space=env.action_space
    )
    # collector
    train_collector = Collector(
        policy,
        train_envs,
        VectorReplayBuffer(args.buffer_size, len(train_envs)),
        exploration_noise=True
    )
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac')
    writer = SummaryWriter(log_path)
    logger = TensorboardLogger(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= args.reward_threshold

    # trainer
    result = offpolicy_trainer(
        policy,
        train_collector,
        test_collector,
        args.epoch,
        args.step_per_epoch,
        args.step_per_collect,
        args.test_num,
        args.batch_size,
        update_per_step=args.update_per_step,
        stop_fn=stop_fn,
        save_best_fn=save_best_fn,
        logger=logger
    )
    assert stop_fn(result['best_reward'])

    # here we define an imitation collector with a trivial policy
    policy.eval()
    if args.task.startswith("Pendulum"):
        args.reward_threshold -= 50  # lower the goal
    net = Actor(
        Net(
            args.state_shape,
            hidden_sizes=args.imitation_hidden_sizes,
            device=args.device
        ),
        args.action_shape,
        max_action=args.max_action,
        device=args.device
    ).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
    il_policy = ImitationPolicy(
        net,
        optim,
        action_space=env.action_space,
        action_scaling=True,
        action_bound_method="clip"
    )
    il_test_collector = Collector(
        il_policy,
        envpool.make_gym(args.task, num_envs=args.test_num, seed=args.seed),
    )
    train_collector.reset()
    result = offpolicy_trainer(
        il_policy,
        train_collector,
        il_test_collector,
        args.epoch,
        args.il_step_per_epoch,
        args.step_per_collect,
        args.test_num,
        args.batch_size,
        stop_fn=stop_fn,
        save_best_fn=save_best_fn,
        logger=logger
    )
    assert stop_fn(result['best_reward'])
コード例 #4
0
def test_il(args=get_args()):
    # envs
    env, _, test_envs = make_atari_env(
        args.task,
        args.seed,
        1,
        args.test_num,
        scale=args.scale_obs,
        frame_stack=args.frames_stack,
    )
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    # model
    net = DQN(*args.state_shape, args.action_shape,
              device=args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = ImitationPolicy(net, optim, action_space=env.action_space)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # buffer
    if args.buffer_from_rl_unplugged:
        buffer = load_buffer(args.load_buffer_name)
    else:
        assert os.path.exists(args.load_buffer_name), \
            "Please run atari_dqn.py first to get expert's data buffer."
        if args.load_buffer_name.endswith(".pkl"):
            buffer = pickle.load(open(args.load_buffer_name, "rb"))
        elif args.load_buffer_name.endswith(".hdf5"):
            buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
        else:
            print(f"Unknown buffer format: {args.load_buffer_name}")
            exit(0)
    print("Replay buffer size:", len(buffer), flush=True)

    # collector
    test_collector = Collector(policy, test_envs, exploration_noise=True)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "il"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))

    def stop_fn(mean_rewards):
        return False

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        test_envs.seed(args.seed)
        print("Testing agent ...")
        test_collector.reset()
        result = test_collector.collect(n_episode=args.test_num,
                                        render=args.render)
        pprint.pprint(result)
        rew = result["rews"].mean()
        print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')

    if args.watch:
        watch()
        exit(0)

    result = offline_trainer(
        policy,
        buffer,
        test_collector,
        args.epoch,
        args.update_per_epoch,
        args.test_num,
        args.batch_size,
        stop_fn=stop_fn,
        save_best_fn=save_best_fn,
        logger=logger,
    )

    pprint.pprint(result)
    watch()
コード例 #5
0
def test_sac_with_il(args=get_args()):
    torch.set_num_threads(1)  # we just need only one thread for NN
    env = gym.make(args.task)
    if args.task == 'Pendulum-v0':
        env.spec.reward_threshold = -250
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    # you can also use tianshou.env.SubprocVectorEnv
    # train_envs = gym.make(args.task)
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    actor = ActorProb(args.layer_num, args.state_shape, args.action_shape,
                      args.max_action, args.device).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    critic1 = Critic(args.layer_num, args.state_shape, args.action_shape,
                     args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(args.layer_num, args.state_shape, args.action_shape,
                     args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
    policy = SACPolicy(actor,
                       actor_optim,
                       critic1,
                       critic1_optim,
                       critic2,
                       critic2_optim,
                       args.tau,
                       args.gamma,
                       args.alpha,
                       [env.action_space.low[0], env.action_space.high[0]],
                       reward_normalization=args.rew_norm,
                       ignore_done=args.ignore_done,
                       estimation_step=args.n_step)
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer)
    assert stop_fn(result['best_reward'])
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()

    # here we define an imitation collector with a trivial policy
    if args.task == 'Pendulum-v0':
        env.spec.reward_threshold = -300  # lower the goal
    net = Actor(1, args.state_shape, args.action_shape, args.max_action,
                args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
    il_policy = ImitationPolicy(net, optim, mode='continuous')
    il_test_collector = Collector(il_policy, test_envs)
    train_collector.reset()
    result = offpolicy_trainer(il_policy,
                               train_collector,
                               il_test_collector,
                               args.epoch,
                               args.step_per_epoch // 5,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer)
    assert stop_fn(result['best_reward'])
    train_collector.close()
    il_test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(il_policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
コード例 #6
0
def test_a2c_with_il(args=get_args()):
    # if you want to use python vector env, please refer to other test scripts
    train_envs = env = envpool.make_gym(args.task,
                                        num_envs=args.training_num,
                                        seed=args.seed)
    test_envs = envpool.make_gym(args.task,
                                 num_envs=args.test_num,
                                 seed=args.seed)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    if args.reward_threshold is None:
        default_reward_threshold = {"CartPole-v0": 195}
        args.reward_threshold = default_reward_threshold.get(
            args.task, env.spec.reward_threshold)
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    # model
    net = Net(args.state_shape,
              hidden_sizes=args.hidden_sizes,
              device=args.device)
    actor = Actor(net, args.action_shape, device=args.device).to(args.device)
    critic = Critic(net, device=args.device).to(args.device)
    optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(),
                             lr=args.lr)
    dist = torch.distributions.Categorical
    policy = A2CPolicy(actor,
                       critic,
                       optim,
                       dist,
                       discount_factor=args.gamma,
                       gae_lambda=args.gae_lambda,
                       vf_coef=args.vf_coef,
                       ent_coef=args.ent_coef,
                       max_grad_norm=args.max_grad_norm,
                       reward_normalization=args.rew_norm,
                       action_space=env.action_space)
    # collector
    train_collector = Collector(
        policy, train_envs,
        VectorReplayBuffer(args.buffer_size, len(train_envs)))
    test_collector = Collector(policy, test_envs)
    # log
    log_path = os.path.join(args.logdir, args.task, 'a2c')
    writer = SummaryWriter(log_path)
    logger = TensorboardLogger(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= args.reward_threshold

    # trainer
    result = onpolicy_trainer(policy,
                              train_collector,
                              test_collector,
                              args.epoch,
                              args.step_per_epoch,
                              args.repeat_per_collect,
                              args.test_num,
                              args.batch_size,
                              episode_per_collect=args.episode_per_collect,
                              stop_fn=stop_fn,
                              save_best_fn=save_best_fn,
                              logger=logger)
    assert stop_fn(result['best_reward'])

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        policy.eval()
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")

    policy.eval()
    # here we define an imitation collector with a trivial policy
    # if args.task == 'CartPole-v0':
    #     env.spec.reward_threshold = 190  # lower the goal
    net = Net(args.state_shape,
              hidden_sizes=args.hidden_sizes,
              device=args.device)
    net = Actor(net, args.action_shape, device=args.device).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
    il_policy = ImitationPolicy(net, optim, action_space=env.action_space)
    il_test_collector = Collector(
        il_policy,
        envpool.make_gym(args.task, num_envs=args.test_num, seed=args.seed),
    )
    train_collector.reset()
    result = offpolicy_trainer(il_policy,
                               train_collector,
                               il_test_collector,
                               args.epoch,
                               args.il_step_per_epoch,
                               args.step_per_collect,
                               args.test_num,
                               args.batch_size,
                               stop_fn=stop_fn,
                               save_best_fn=save_best_fn,
                               logger=logger)
    assert stop_fn(result['best_reward'])

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        il_policy.eval()
        collector = Collector(il_policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
コード例 #7
0
ファイル: d4rl_il.py プロジェクト: Trinkle23897/tianshou
def test_il():
    args = get_args()
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]  # float
    print("device:", args.device)
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))

    args.state_dim = args.state_shape[0]
    args.action_dim = args.action_shape[0]
    print("Max_action", args.max_action)

    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)]
    )
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    test_envs.seed(args.seed)

    # model
    net = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        device=args.device,
    )
    actor = Actor(
        net,
        action_shape=args.action_shape,
        max_action=args.max_action,
        device=args.device
    ).to(args.device)
    optim = torch.optim.Adam(actor.parameters(), lr=args.lr)

    policy = ImitationPolicy(
        actor,
        optim,
        action_space=env.action_space,
        action_scaling=True,
        action_bound_method="clip"
    )

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    test_collector = Collector(policy, test_envs)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "cql"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))

    def watch():
        if args.resume_path is None:
            args.resume_path = os.path.join(log_path, "policy.pth")

        policy.load_state_dict(
            torch.load(args.resume_path, map_location=torch.device("cpu"))
        )
        policy.eval()
        collector = Collector(policy, env)
        collector.collect(n_episode=1, render=1 / 35)

    if not args.watch:
        dataset = d4rl.qlearning_dataset(gym.make(args.expert_data_task))
        dataset_size = dataset["rewards"].size

        print("dataset_size", dataset_size)
        replay_buffer = ReplayBuffer(dataset_size)

        for i in range(dataset_size):
            replay_buffer.add(
                Batch(
                    obs=dataset["observations"][i],
                    act=dataset["actions"][i],
                    rew=dataset["rewards"][i],
                    done=dataset["terminals"][i],
                    obs_next=dataset["next_observations"][i],
                )
            )
        print("dataset loaded")
        # trainer
        result = offline_trainer(
            policy,
            replay_buffer,
            test_collector,
            args.epoch,
            args.step_per_epoch,
            args.test_num,
            args.batch_size,
            save_best_fn=save_best_fn,
            logger=logger,
        )
        pprint.pprint(result)
    else:
        watch()

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num, render=args.render)
    print(f"Final reward: {result['rews'].mean()}, length: {result['lens'].mean()}")