def init_policy(args, env): actor = Actor(layer=None, state_shape=args.state_shape, action_shape=args.action_shape, action_range=args.action_range, device=args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic1 = Critic(layer=None, state_shape=args.state_shape, action_shape=args.action_shape, device=args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(layer=None, state_shape=args.state_shape, action_shape=args.action_shape, device=args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy(actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise), args.policy_noise, args.update_actor_freq, args.noise_clip, args.action_range, reward_normalization=args.rew_norm, ignore_done=args.ignore_done, estimation_step=args.n_step) return policy
def test_td3(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # train_envs = gym.make(args.task) train_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.layer_num, args.state_shape, device=args.device) actor = Actor( net, args.action_shape, args.max_action, args.device ).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net = Net(args.layer_num, args.state_shape, args.action_shape, concat=True, device=args.device) critic1 = Critic(net, args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(net, args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise), args.policy_noise, args.update_actor_freq, args.noise_clip, [env.action_space.low[0], env.action_space.high[0]], reward_normalization=True, ignore_done=True) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log writer = SummaryWriter(args.logdir + '/' + 'td3') def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}')
def test_td3(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] args.exploration_noise = args.exploration_noise * args.max_action args.policy_noise = args.policy_noise * args.max_action args.noise_clip = args.noise_clip * args.max_action print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high)) # train_envs = gym.make(args.task) if args.training_num > 1: train_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)] ) else: train_envs = gym.make(args.task) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor( net_a, args.action_shape, max_action=args.max_action, device=args.device ).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net_c1 = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device ) net_c2 = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device ) critic1 = Critic(net_c1, device=args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(net_c2, device=args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, tau=args.tau, gamma=args.gamma, exploration_noise=GaussianNoise(sigma=args.exploration_noise), policy_noise=args.policy_noise, update_actor_freq=args.update_actor_freq, noise_clip=args.noise_clip, estimation_step=args.n_step, action_space=env.action_space ) # load a previous policy if args.resume_path: policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # collector if args.training_num > 1: buffer = VectorReplayBuffer(args.buffer_size, len(train_envs)) else: buffer = ReplayBuffer(args.buffer_size) train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) test_collector = Collector(policy, test_envs) train_collector.collect(n_step=args.start_timesteps, random=True) # log t0 = datetime.datetime.now().strftime("%m%d_%H%M%S") log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_td3' log_path = os.path.join(args.logdir, args.task, 'td3', log_file) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) logger = TensorboardLogger(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) if not args.watch: # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, save_best_fn=save_best_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False ) pprint.pprint(result) # Let's watch its performance! policy.eval() test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
def test_td3(args=get_args()): torch.set_num_threads(1) # we just need only one thread for NN env = gym.make(args.task) if args.task == 'Pendulum-v0': env.spec.reward_threshold = -250 args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.layer_num, args.state_shape, device=args.device) actor = Actor(net, args.action_shape, args.max_action, args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net = Net(args.layer_num, args.state_shape, args.action_shape, concat=True, device=args.device) critic1 = Critic(net, args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(net, args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy(actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise), args.policy_noise, args.update_actor_freq, args.noise_clip, [env.action_space.low[0], env.action_space.high[0]], reward_normalization=args.rew_norm, ignore_done=args.ignore_done, estimation_step=args.n_step) # collector train_collector = Collector(policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'td3') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = offpolicy_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}')
def test_td3(args=get_args()): # initialize environment env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] train_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = Actor(args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device, hidden_layer_size=args.hidden_size).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic1 = Critic(args.layer_num, args.state_shape, args.action_shape, args.device, hidden_layer_size=args.hidden_size).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(args.layer_num, args.state_shape, args.action_shape, args.device, hidden_layer_size=args.hidden_size).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise), args.policy_noise, args.update_actor_freq, args.noise_clip, action_range=[env.action_space.low[0], env.action_space.high[0]], reward_normalization=args.rew_norm, ignore_done=False) # collector if args.training_num == 0: max_episode_steps = train_envs._max_episode_steps else: max_episode_steps = train_envs.envs[0]._max_episode_steps train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size, max_ep_len=max_episode_steps)) test_collector = Collector(policy, test_envs, mode='test') # log log_path = os.path.join(args.logdir, args.task, 'td3', str(args.seed)) writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) env.spec.reward_threshold = 100000 def stop_fn(x): return x >= env.spec.reward_threshold # trainer result = offpolicy_exact_trainer(policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close()
args.state_shape, args.action_shape, concat=True, device=args.device) critic1 = Critic(net, args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(net, args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy(actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise), args.policy_noise, args.update_actor_freq, args.noise_clip, [env.action_space.low[0], env.action_space.high[0]], reward_normalization=args.rew_norm, ignore_done=args.ignore_done, estimation_step=args.n_step) # collector train_collector = Collector(policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'td3') writer = SummaryWriter(log_path)
def test_td3(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] if args.reward_threshold is None: default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250} args.reward_threshold = default_reward_threshold.get( args.task, env.spec.reward_threshold) # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor(net, args.action_shape, max_action=args.max_action, device=args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net_c1 = Net(args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device) critic1 = Critic(net_c1, device=args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) net_c2 = Net(args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device) critic2 = Critic(net_c2, device=args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, tau=args.tau, gamma=args.gamma, exploration_noise=GaussianNoise(sigma=args.exploration_noise), policy_noise=args.policy_noise, update_actor_freq=args.update_actor_freq, noise_clip=args.noise_clip, reward_normalization=args.rew_norm, estimation_step=args.n_step, action_space=env.action_space) # collector train_collector = Collector(policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'td3') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= args.reward_threshold # Iterator trainer trainer = OffpolicyTrainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, update_per_step=args.update_per_step, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ) for epoch, epoch_stat, info in trainer: print(f"Epoch: {epoch}") print(epoch_stat) print(info) assert stop_fn(info["best_reward"]) if __name__ == "__main__": pprint.pprint(info) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
def test_td3(args=get_args()): env, train_envs, test_envs = make_mujoco_env(args.task, args.seed, args.training_num, args.test_num, obs_norm=False) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] args.exploration_noise = args.exploration_noise * args.max_action args.policy_noise = args.policy_noise * args.max_action args.noise_clip = args.noise_clip * args.max_action print("Observations shape:", args.state_shape) print("Actions shape:", args.action_shape) print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high)) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) # model net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor(net_a, args.action_shape, max_action=args.max_action, device=args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net_c1 = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device, ) net_c2 = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device, ) critic1 = Critic(net_c1, device=args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic(net_c2, device=args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, tau=args.tau, gamma=args.gamma, exploration_noise=GaussianNoise(sigma=args.exploration_noise), policy_noise=args.policy_noise, update_actor_freq=args.update_actor_freq, noise_clip=args.noise_clip, estimation_step=args.n_step, action_space=env.action_space, ) # load a previous policy if args.resume_path: policy.load_state_dict( torch.load(args.resume_path, map_location=args.device)) print("Loaded agent from: ", args.resume_path) # collector if args.training_num > 1: buffer = VectorReplayBuffer(args.buffer_size, len(train_envs)) else: buffer = ReplayBuffer(args.buffer_size) train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) test_collector = Collector(policy, test_envs) train_collector.collect(n_step=args.start_timesteps, random=True) # log now = datetime.datetime.now().strftime("%y%m%d-%H%M%S") args.algo_name = "td3" log_name = os.path.join(args.task, args.algo_name, str(args.seed), now) log_path = os.path.join(args.logdir, log_name) # logger if args.logger == "wandb": logger = WandbLogger( save_interval=1, name=log_name.replace(os.path.sep, "__"), run_id=args.resume_id, config=args, project=args.wandb_project, ) writer = SummaryWriter(log_path) writer.add_text("args", str(args)) if args.logger == "tensorboard": logger = TensorboardLogger(writer) else: # wandb logger.load(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) if not args.watch: # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, save_best_fn=save_best_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False, ) pprint.pprint(result) # Let's watch its performance! policy.eval() test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) print( f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}' )