def onpolicy_trainer( policy: BasePolicy, train_collector: Collector, test_collector: Collector, max_epoch: int, step_per_epoch: int, repeat_per_collect: int, episode_per_test: int, batch_size: int, step_per_collect: Optional[int] = None, episode_per_collect: Optional[int] = None, train_fn: Optional[Callable[[int, int], None]] = None, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None, logger: BaseLogger = LazyLogger(), verbose: bool = True, test_in_train: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for on-policy trainer procedure. The "step" in trainer means an environment step (a.k.a. transition). :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param Collector train_collector: the collector used for training. :param Collector test_collector: the collector used for testing. :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching ``max_epoch`` if ``stop_fn`` is set. :param int step_per_epoch: the number of transitions collected per epoch. :param int repeat_per_collect: the number of repeat time for policy learning, for example, set it to 2 means the policy needs to learn each given batch data twice. :param int episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param int step_per_collect: the number of transitions the collector would collect before the network update, i.e., trainer will collect "step_per_collect" transitions and do some policy network update repeatly in each epoch. :param int episode_per_collect: the number of episodes the collector would collect before the network update, i.e., trainer will collect "episode_per_collect" episodes and do some policy network update repeatly in each epoch. :param function train_fn: a hook called at the beginning of training in each epoch. It can be used to perform custom additional operations, with the signature ``f( num_epoch: int, step_idx: int) -> None``. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f( num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param function reward_metric: a function with signature ``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``, used in multi-agent RL. We need to return a single scalar for each episode's result to monitor training in the multi-agent RL setting. This function specifies what is the desired metric, e.g., the reward of agent 1 or the average reward over all agents. :param BaseLogger logger: A logger that logs statistics during training/testing/updating. Default to a logger that doesn't log anything. :param bool verbose: whether to print the information. Default to True. :param bool test_in_train: whether to test in the training phase. Default to True. :return: See :func:`~tianshou.trainer.gather_info`. .. note:: Only either one of step_per_collect and episode_per_collect can be specified. """ env_step, gradient_step = 0, 0 last_rew, last_len = 0.0, 0 stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() train_collector.reset_stat() test_collector.reset_stat() test_in_train = test_in_train and train_collector.policy == policy test_result = test_episode(policy, test_collector, test_fn, 0, episode_per_test, logger, env_step, reward_metric) best_epoch = 0 best_reward, best_reward_std = test_result["rew"], test_result["rew_std"] for epoch in range(1, 1 + max_epoch): # train policy.train() with tqdm.tqdm(total=step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config) as t: while t.n < t.total: if train_fn: train_fn(epoch, env_step) result = train_collector.collect(n_step=step_per_collect, n_episode=episode_per_collect) if reward_metric: result["rews"] = reward_metric(result["rews"]) env_step += int(result["n/st"]) t.update(result["n/st"]) logger.log_train_data(result, env_step) last_rew = result['rew'] if 'rew' in result else last_rew last_len = result['len'] if 'len' in result else last_len data = { "env_step": str(env_step), "rew": f"{last_rew:.2f}", "len": str(int(last_len)), "n/ep": str(int(result["n/ep"])), "n/st": str(int(result["n/st"])), } if test_in_train and stop_fn and stop_fn(result["rew"]): test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, logger, env_step) if stop_fn(test_result["rew"]): if save_fn: save_fn(policy) t.set_postfix(**data) return gather_info(start_time, train_collector, test_collector, test_result["rew"], test_result["rew_std"]) else: policy.train() losses = policy.update(0, train_collector.buffer, batch_size=batch_size, repeat=repeat_per_collect) train_collector.reset_buffer() step = max( [1] + [len(v) for v in losses.values() if isinstance(v, list)]) gradient_step += step for k in losses.keys(): stat[k].add(losses[k]) losses[k] = stat[k].get() data[k] = f"{losses[k]:.3f}" logger.log_update_data(losses, gradient_step) t.set_postfix(**data) if t.n <= t.total: t.update() # test test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, logger, env_step) rew, rew_std = test_result["rew"], test_result["rew_std"] if best_epoch == -1 or best_reward < rew: best_reward, best_reward_std = rew, rew_std best_epoch = epoch if save_fn: save_fn(policy) if verbose: print( f"Epoch #{epoch}: test_reward: {rew:.6f} ± {rew_std:.6f}, best_rew" f"ard: {best_reward:.6f} ± {best_reward_std:.6f} in #{best_epoch}" ) if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward, best_reward_std)
def onpolicy_trainer( policy: BasePolicy, train_collector: Collector, test_collector: Collector, max_epoch: int, step_per_epoch: int, collect_per_step: int, repeat_per_collect: int, episode_per_test: Union[int, List[int]], batch_size: int, train_fn: Optional[Callable[[int, int], None]] = None, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, writer: Optional[SummaryWriter] = None, log_interval: int = 1, verbose: bool = True, test_in_train: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for on-policy trainer procedure. The "step" in trainer means a policy network update. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param train_collector: the collector used for training. :type train_collector: :class:`~tianshou.data.Collector` :param test_collector: the collector used for testing. :type test_collector: :class:`~tianshou.data.Collector` :param int max_epoch: the maximum of epochs for training. The training process might be finished before reaching the ``max_epoch``. :param int step_per_epoch: the number of step for updating policy network in one epoch. :param int collect_per_step: the number of episodes the collector would collect before the network update. In other words, collect some episodes and do one policy network update. :param int repeat_per_collect: the number of repeat time for policy learning, for example, set it to 2 means the policy needs to learn each given batch data twice. :param episode_per_test: the number of episodes for one policy evaluation. :type episode_per_test: int or list of ints :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function train_fn: a function receives the current number of epoch and step index, and performs some operations at the beginning of training in this poch. :param function test_fn: a function receives the current number of epoch and step index, and performs some operations at the beginning of testing in this epoch. :param function save_fn: a function for saving policy when the undiscounted average mean reward in evaluation phase gets better. :param function stop_fn: a function receives the average undiscounted returns of the testing result, return a boolean which indicates whether reaching the goal. :param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard SummaryWriter. :param int log_interval: the log interval of the writer. :param bool verbose: whether to print the information. :param bool test_in_train: whether to test in the training phase. :return: See :func:`~tianshou.trainer.gather_info`. """ env_step, gradient_step = 0, 0 best_epoch, best_reward, best_reward_std = -1, -1.0, 0.0 stat: Dict[str, MovAvg] = {} start_time = time.time() train_collector.reset_stat() test_collector.reset_stat() test_in_train = test_in_train and train_collector.policy == policy for epoch in range(1, 1 + max_epoch): # train policy.train() with tqdm.tqdm( total=step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config ) as t: while t.n < t.total: if train_fn: train_fn(epoch, env_step) result = train_collector.collect(n_episode=collect_per_step) env_step += int(result["n/st"]) data = { "env_step": str(env_step), "rew": f"{result['rew']:.2f}", "len": str(int(result["len"])), "n/ep": str(int(result["n/ep"])), "n/st": str(int(result["n/st"])), "v/ep": f"{result['v/ep']:.2f}", "v/st": f"{result['v/st']:.2f}", } if writer and env_step % log_interval == 0: for k in result.keys(): writer.add_scalar( "train/" + k, result[k], global_step=env_step) if test_in_train and stop_fn and stop_fn(result["rew"]): test_result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test, writer, env_step) if stop_fn(test_result["rew"]): if save_fn: save_fn(policy) for k in result.keys(): data[k] = f"{result[k]:.2f}" t.set_postfix(**data) return gather_info( start_time, train_collector, test_collector, test_result["rew"], test_result["rew_std"]) else: policy.train() losses = policy.update( 0, train_collector.buffer, batch_size=batch_size, repeat=repeat_per_collect) train_collector.reset_buffer() step = max([1] + [ len(v) for v in losses.values() if isinstance(v, list)]) gradient_step += step for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f"{stat[k].get():.6f}" if writer and gradient_step % log_interval == 0: writer.add_scalar( k, stat[k].get(), global_step=gradient_step) t.update(step) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, writer, env_step) if best_epoch == -1 or best_reward < result["rew"]: best_reward, best_reward_std = result["rew"], result["rew_std"] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f"Epoch #{epoch}: test_reward: {result['rew']:.6f} ± " f"{result['rew_std']:.6f}, best_reward: {best_reward:.6f} ± " f"{best_reward_std:.6f} in #{best_epoch}") if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward, best_reward_std)
def offline_trainer( policy: BasePolicy, buffer: ReplayBuffer, test_collector: Collector, max_epoch: int, update_per_epoch: int, episode_per_test: int, batch_size: int, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None, logger: BaseLogger = LazyLogger(), verbose: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for offline trainer procedure. The "step" in offline trainer means a gradient step. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param Collector test_collector: the collector used for testing. :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching ``max_epoch`` if ``stop_fn`` is set. :param int update_per_epoch: the number of policy network updates, so-called gradient steps, per epoch. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f( num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param function reward_metric: a function with signature ``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``, used in multi-agent RL. We need to return a single scalar for each episode's result to monitor training in the multi-agent RL setting. This function specifies what is the desired metric, e.g., the reward of agent 1 or the average reward over all agents. :param BaseLogger logger: A logger that logs statistics during updating/testing. Default to a logger that doesn't log anything. :param bool verbose: whether to print the information. Default to True. :return: See :func:`~tianshou.trainer.gather_info`. """ gradient_step = 0 stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() test_collector.reset_stat() test_result = test_episode(policy, test_collector, test_fn, 0, episode_per_test, logger, gradient_step, reward_metric) best_epoch = 0 best_reward, best_reward_std = test_result["rew"], test_result["rew_std"] for epoch in range(1, 1 + max_epoch): policy.train() with tqdm.trange(update_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config) as t: for i in t: gradient_step += 1 losses = policy.update(batch_size, buffer) data = {"gradient_step": str(gradient_step)} for k in losses.keys(): stat[k].add(losses[k]) losses[k] = stat[k].get() data[k] = f"{losses[k]:.3f}" logger.log_update_data(losses, gradient_step) t.set_postfix(**data) # test test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, logger, gradient_step, reward_metric) rew, rew_std = test_result["rew"], test_result["rew_std"] if best_epoch == -1 or best_reward < rew: best_reward, best_reward_std = rew, rew_std best_epoch = epoch if save_fn: save_fn(policy) if verbose: print( f"Epoch #{epoch}: test_reward: {rew:.6f} ± {rew_std:.6f}, best_rew" f"ard: {best_reward:.6f} ± {best_reward_std:.6f} in #{best_epoch}" ) if stop_fn and stop_fn(best_reward): break return gather_info(start_time, None, test_collector, best_reward, best_reward_std)
def onpolicy_trainer( policy: BasePolicy, train_collector: Collector, test_collector: Collector, max_epoch: int, frame_per_epoch: int, collect_per_step: int, repeat_per_collect: int, episode_per_test: Union[int, List[int]], batch_size: int, train_fn: Optional[Callable[[int], None]] = None, test_fn: Optional[Callable[[int], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, log_fn: Optional[Callable[[dict], None]] = None, writer: Optional[SummaryWriter] = None, log_interval: int = 1, verbose: bool = True, **kwargs ) -> Dict[str, Union[float, str]]: global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() test_in_train = train_collector.policy == policy for epoch in range(1, 1 + max_epoch): # train policy.train() if train_fn: train_fn(epoch) with tqdm.tqdm(total=frame_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: result = train_collector.collect(n_step=collect_per_step, log_fn=log_fn) data = {} if test_in_train and stop_fn and stop_fn(result['rew']): test_result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test) if stop_fn and stop_fn(test_result['rew']): if save_fn: save_fn(policy) for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info( start_time, train_collector, test_collector, test_result['rew']) else: policy.train() if train_fn: train_fn(epoch) losses = policy.learn( train_collector.sample(0), batch_size, repeat_per_collect) train_collector.reset_buffer() global_step += collect_per_step for k in result.keys(): data[k] = f'{result[k]:.2f}' if writer and global_step % log_interval == 0: writer.add_scalar( k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.6f}' if writer and global_step % log_interval == 0: writer.add_scalar( k, stat[k].get(), global_step=global_step) t.update(collect_per_step) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f'Epoch #{epoch}: test_reward: {result["rew"]:.6f}, ' f'best_reward: {best_reward:.6f} in #{best_epoch}') if stop_fn and stop_fn(best_reward): break return gather_info( start_time, train_collector, test_collector, best_reward)
def offpolicy_trainer(policy: BasePolicy, train_collector: Collector, test_collector: Collector, max_epoch: int, step_per_epoch: int, collect_per_step: int, episode_per_test: Union[int, List[int]], batch_size: int, update_per_step: int = 1, train_fn: Optional[Callable[[int], None]] = None, test_fn: Optional[Callable[[int], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, log_fn: Optional[Callable[[dict], None]] = None, writer: Optional[SummaryWriter] = None, log_interval: int = 1, verbose: bool = True, **kwargs) -> Dict[str, Union[float, str]]: """A wrapper for off-policy trainer procedure. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param train_collector: the collector used for training. :type train_collector: :class:`~tianshou.data.Collector` :param test_collector: the collector used for testing. :type test_collector: :class:`~tianshou.data.Collector` :param int max_epoch: the maximum of epochs for training. The training process might be finished before reaching the ``max_epoch``. :param int step_per_epoch: the number of step for updating policy network in one epoch. :param int collect_per_step: the number of frames the collector would collect before the network update. In other words, collect some frames and do some policy network update. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param int update_per_step: the number of times the policy network would be updated after frames be collected. In other words, collect some frames and do some policy network update. :param function train_fn: a function receives the current number of epoch index and performs some operations at the beginning of training in this epoch. :param function test_fn: a function receives the current number of epoch index and performs some operations at the beginning of testing in this epoch. :param function save_fn: a function for saving policy when the undiscounted average mean reward in evaluation phase gets better. :param function stop_fn: a function receives the average undiscounted returns of the testing result, return a boolean which indicates whether reaching the goal. :param function log_fn: a function receives env info for logging. :param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard SummaryWriter. :param int log_interval: the log interval of the writer. :param bool verbose: whether to print the information. :return: See :func:`~tianshou.trainer.gather_info`. """ global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() test_in_train = train_collector.policy == policy for epoch in range(1, 1 + max_epoch): # train policy.train() if train_fn: train_fn(epoch) with tqdm.tqdm(total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: result = train_collector.collect(n_step=collect_per_step, log_fn=log_fn) data = {} if test_in_train and stop_fn and stop_fn(result['rew']): test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if stop_fn and stop_fn(test_result['rew']): if save_fn: save_fn(policy) for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info(start_time, train_collector, test_collector, test_result['rew']) else: policy.train() if train_fn: train_fn(epoch) for i in range(update_per_step * min( result['n/st'] // collect_per_step, t.total - t.n)): global_step += 1 losses = policy.learn(train_collector.sample(batch_size)) for k in result.keys(): data[k] = f'{result[k]:.2f}' if writer and global_step % log_interval == 0: writer.add_scalar(k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.6f}' if writer and global_step % log_interval == 0: writer.add_scalar(k, stat[k].get(), global_step=global_step) t.update(1) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f'Epoch #{epoch}: test_reward: {result["rew"]:.6f}, ' f'best_reward: {best_reward:.6f} in #{best_epoch}') if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward)
def onpolicy_trainer(policy, train_collector, test_collector, max_epoch, step_per_epoch, collect_per_step, repeat_per_collect, episode_per_test, batch_size, train_fn=None, test_fn=None, stop_fn=None, save_fn=None, log_fn=None, writer=None, log_interval=1, verbose=True, task='', **kwargs): """A wrapper for on-policy trainer procedure. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param train_collector: the collector used for training. :type train_collector: :class:`~tianshou.data.Collector` :param test_collector: the collector used for testing. :type test_collector: :class:`~tianshou.data.Collector` :param int max_epoch: the maximum of epochs for training. The training process might be finished before reaching the ``max_epoch``. :param int step_per_epoch: the number of step for updating policy network in one epoch. :param int collect_per_step: the number of frames the collector would collect before the network update. In other words, collect some frames and do one policy network update. :param int repeat_per_collect: the number of repeat time for policy learning, for example, set it to 2 means the policy needs to learn each given batch data twice. :param episode_per_test: the number of episodes for one policy evaluation. :type episode_per_test: int or list of ints :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function train_fn: a function receives the current number of epoch index and performs some operations at the beginning of training in this epoch. :param function test_fn: a function receives the current number of epoch index and performs some operations at the beginning of testing in this epoch. :param function save_fn: a function for saving policy when the undiscounted average mean reward in evaluation phase gets better. :param function stop_fn: a function receives the average undiscounted returns of the testing result, return a boolean which indicates whether reaching the goal. :param function log_fn: a function receives env info for logging. :param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard SummaryWriter. :param int log_interval: the log interval of the writer. :param bool verbose: whether to print the information. :return: See :func:`~tianshou.trainer.gather_info`. """ global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() for epoch in range(1, 1 + max_epoch): # train policy.train() if train_fn: train_fn(epoch) with tqdm.tqdm(total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: result = train_collector.collect(n_episode=collect_per_step, log_fn=log_fn) data = {} if stop_fn and stop_fn(result['rew']): test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if stop_fn and stop_fn(test_result['rew']): if save_fn: save_fn(policy) for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info(start_time, train_collector, test_collector, test_result['rew']) else: policy.train() if train_fn: train_fn(epoch) losses = policy.learn(train_collector.sample(0), batch_size, repeat_per_collect) train_collector.reset_buffer() step = 1 for k in losses.keys(): if isinstance(losses[k], list): step = max(step, len(losses[k])) global_step += step for k in result.keys(): data[k] = f'{result[k]:.2f}' if writer and global_step % log_interval == 0: writer.add_scalar(k + '_' + task if task else k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.6f}' if writer and global_step % log_interval == 0: writer.add_scalar(k + '_' + task if task else k, stat[k].get(), global_step=global_step) t.update(step) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f'Epoch #{epoch}: test_reward: {result["rew"]:.6f}, ' f'best_reward: {best_reward:.6f} in #{best_epoch}') if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward)
def offpolicy_trainer(policy, train_collector, test_collector, max_epoch, step_per_epoch, collect_per_step, episode_per_test, batch_size, train_fn=None, stop_fn=None, save_fn=None, test_in_train=False, writer=None, log_interval=10, verbose=True, **kwargs): """A wrapper for off-policy trainer procedure. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param train_collector: the collector used for training. :type train_collector: :class:`~tianshou.data.Collector` :param test_collector: the collector used for testing. :type test_collector: :class:`~tianshou.data.Collector` :param int max_epoch: the maximum of epochs for training. The training process might be finished before reaching the ``max_epoch``. :param int step_per_epoch: the number of step for updating policy network in one epoch. :param int collect_per_step: the number of frames the collector would collect before the network update. In other words, collect some frames and do one policy network update. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function train_fn: a function receives the current number of epoch index and performs some operations at the beginning of training in this epoch. :param function test_fn: a function receives the current number of epoch index and performs some operations at the beginning of testing in this epoch. :param function save_fn: a function for saving policy when the undiscounted average mean reward in evaluation phase gets better. :param function log_fn: a function receives env info for logging. :param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard SummaryWriter. :param int log_interval: the log interval of the writer. :param bool verbose: whether to print the information. :return: See :func:`~tianshou.trainer.gather_info`. """ global_step = 0 best_epoch, best_reward = -1, -1 stat = collections.defaultdict(lambda: collections.deque([], maxlen=5)) start_time = time.time() for epoch in range(1, 1 + max_epoch): # train policy.train() if train_fn: train_fn(epoch) with tqdm.tqdm(total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: result = train_collector.collect(n_step=collect_per_step) data = {} if test_in_train and stop_fn and stop_fn(result['ep/reward']): test_result = test_episode(policy, test_collector, episode_per_test) if stop_fn and stop_fn(test_result['ep/reward']): if save_fn: save_fn(policy) for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info(start_time, train_collector, test_collector, test_result['ep/reward']) else: policy.train() if train_fn: train_fn(epoch) for i in range(min(result['n/st'] // collect_per_step, t.total - t.n)): global_step += 1 batch = policy.state_encode(train_collector.sample(batch_size)) losses = policy.learn(batch) for k in result.keys(): if not k[0] in ['v', 'n']: data[k] = f'{result[k]:.1f}' for k in losses.keys(): stat[k].append(losses[k]) if not k[0] in ['g']: data[k] = f'{np.nanmean(stat[k]):.1f}' if writer and global_step % log_interval == 0: for k in result.keys(): writer.add_scalar(k, result[k], global_step=global_step) for k in losses.keys(): writer.add_scalar(k, np.nanmean(stat[k]), global_step=global_step) t.update(1) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, episode_per_test) writer.add_scalar('test/reward', result['ep/reward'], global_step) if best_epoch == -1 or best_reward < result['ep/reward']: best_reward = result['ep/reward'] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f'Epoch #{epoch}: test_reward: {result["ep/reward"]:.6f}, ' f'best_reward: {best_reward:.6f} in #{best_epoch}') if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward)
def offpolicy_trainer(policy, train_collector, test_collector, max_epoch, step_per_epoch, collect_per_step, episode_per_test, batch_size, train_fn=None, test_fn=None, stop_fn=None, writer=None, log_interval=1, verbose=True, task=''): global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() for epoch in range(1, 1 + max_epoch): # train policy.train() if train_fn: train_fn(epoch) with tqdm.tqdm(total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: result = train_collector.collect(n_step=collect_per_step) data = {} if stop_fn and stop_fn(result['rew']): test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if stop_fn and stop_fn(test_result['rew']): for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info(start_time, train_collector, test_collector, test_result['rew']) else: policy.train() if train_fn: train_fn(epoch) for i in range( min(result['n/st'] // collect_per_step, t.total - t.n)): global_step += 1 losses = policy.learn(train_collector.sample(batch_size)) for k in result.keys(): data[k] = f'{result[k]:.2f}' if writer and global_step % log_interval == 0: writer.add_scalar(k + '_' + task if task else k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.6f}' if writer and global_step % log_interval == 0: writer.add_scalar(k + '_' + task if task else k, stat[k].get(), global_step=global_step) t.update(1) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch if verbose: print(f'Epoch #{epoch}: test_reward: {result["rew"]:.6f}, ' f'best_reward: {best_reward:.6f} in #{best_epoch}') if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward)
def onpolicy_trainer(policy, train_collector, test_collector, max_epoch, step_per_epoch, collect_per_step, repeat_per_collect, episode_per_test, batch_size, train_fn=None, test_fn=None, stop_fn=None, writer=None, log_interval=1, verbose=True, task='', **kwargs): """A wrapper for on-policy trainer procedure. Parameters * **policy** – an instance of the :class:`~tianshou.policy.BasePolicy`\ class. * **train_collector** – the collector used for training. * **test_collector** – the collector used for testing. * **max_epoch** – the maximum of epochs for training. The training \ process might be finished before reaching the ``max_epoch``. * **step_per_epoch** – the number of step for updating policy network \ in one epoch. * **collect_per_step** – the number of frames the collector would \ collect before the network update. In other words, collect some \ frames and do one policy network update. * **repeat_per_collect** – the number of repeat time for policy \ learning, for example, set it to 2 means the policy needs to learn\ each given batch data twice. * **episode_per_test** – the number of episodes for one policy \ evaluation. * **batch_size** – the batch size of sample data, which is going to \ feed in the policy network. * **train_fn** – a function receives the current number of epoch index\ and performs some operations at the beginning of training in this \ epoch. * **test_fn** – a function receives the current number of epoch index \ and performs some operations at the beginning of testing in this \ epoch. * **stop_fn** – a function receives the average undiscounted returns \ of the testing result, return a boolean which indicates whether \ reaching the goal. * **writer** – a SummaryWriter provided from TensorBoard. * **log_interval** – an int indicating the log interval of the writer. * **verbose** – a boolean indicating whether to print the information. :return: See :func:`~tianshou.trainer.gather_info`. """ global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() for epoch in range(1, 1 + max_epoch): # train policy.train() if train_fn: train_fn(epoch) with tqdm.tqdm(total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: result = train_collector.collect(n_episode=collect_per_step) data = {} if stop_fn and stop_fn(result['rew']): test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if stop_fn and stop_fn(test_result['rew']): for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info(start_time, train_collector, test_collector, test_result['rew']) else: policy.train() if train_fn: train_fn(epoch) losses = policy.learn(train_collector.sample(0), batch_size, repeat_per_collect) train_collector.reset_buffer() step = 1 for k in losses.keys(): if isinstance(losses[k], list): step = max(step, len(losses[k])) global_step += step for k in result.keys(): data[k] = f'{result[k]:.2f}' if writer and global_step % log_interval == 0: writer.add_scalar(k + '_' + task if task else k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.6f}' if writer and global_step % log_interval == 0: writer.add_scalar(k + '_' + task if task else k, stat[k].get(), global_step=global_step) t.update(step) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch if verbose: print(f'Epoch #{epoch}: test_reward: {result["rew"]:.6f}, ' f'best_reward: {best_reward:.6f} in #{best_epoch}') if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward)
def onpolicy_trainer( policy: BasePolicy, train_collector: Collector, test_collector: Collector, max_epoch: int, frame_per_epoch: int, collect_per_step: int, repeat_per_collect: int, episode_per_test: Union[int, Sequence[int]], batch_size: int, train_fn: Optional[Callable[[int, int], None]] = None, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, writer: Optional[SummaryWriter] = None, log_interval: int = 1, verbose: bool = True, test_in_train: bool = True, **kwargs) -> Dict[str, Union[float, str]]: """Slightly modified Tianshou `onpolicy_trainer` original method to enable to define the maximum number of training steps instead of number of episodes, for consistency with other learning frameworks. """ global_step = 0 best_epoch, best_reward = -1, -1.0 stat: Dict[str, MovAvg] = {} start_time = time.time() train_collector.reset_stat() test_collector.reset_stat() test_in_train = test_in_train and train_collector.policy == policy for epoch in range(1, 1 + max_epoch): # train policy.train() with tqdm.tqdm( total=frame_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config ) as t: while t.n < t.total: if train_fn: train_fn(epoch, global_step) result = train_collector.collect(n_step=collect_per_step) data = {} if test_in_train and stop_fn and stop_fn(result["rew"]): test_result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test, writer, global_step) if stop_fn(test_result["rew"]): if save_fn: save_fn(policy) for k in result.keys(): data[k] = f"{result[k]:.2f}" t.set_postfix(**data) return gather_info( start_time, train_collector, test_collector, test_result["rew"]) else: policy.train() losses = policy.update( 0, train_collector.buffer, batch_size=batch_size, repeat=repeat_per_collect) train_collector.reset_buffer() step = 1 for v in losses.values(): if isinstance(v, (list, tuple)): step = max(step, len(v)) global_step += step * collect_per_step for k in result.keys(): data[k] = f"{result[k]:.2f}" if writer and global_step % log_interval == 0: writer.add_scalar( "train/" + k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f"{stat[k].get():.6f}" if writer and global_step % log_interval == 0: writer.add_scalar( k, stat[k].get(), global_step=global_step) t.update(collect_per_step) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, writer, global_step) if best_epoch == -1 or best_reward < result["rew"]: best_reward = result["rew"] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f"Epoch #{epoch}: test_reward: {result['rew']:.6f}, " f"best_reward: {best_reward:.6f} in #{best_epoch}") if stop_fn and stop_fn(best_reward): break return gather_info( start_time, train_collector, test_collector, best_reward)
def offpolicy_trainer_with_views(A, B, max_epoch, step_per_epoch, collect_per_step, episode_per_test, batch_size, copier=False, peer=0., verbose=True, test_fn=None, task=''): global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() for epoch in range(1, 1 + max_epoch): # train A.train() B.train() with tqdm.tqdm(total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: for view, other_view in zip([A, B], [B, A]): result = view.train_collector.collect( n_step=collect_per_step) data = {} if view.stop_fn(result['rew']): test_result = test_episode(view.policy, view.test_collector, test_fn, epoch, episode_per_test) if view.stop_fn(test_result['rew']): for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info(start_time, view.train_collector, view.test_collector, test_result['rew']) else: view.policy.train() for i in range( min(result['n/st'] // collect_per_step, t.total - t.n)): global_step += 1 batch = view.train_collector.sample(batch_size) losses = view.policy.learn(batch) # Learn from demonstration if copier: demo = other_view.policy(batch) view.learn_from_demos(batch, demo, peer=peer) for k in result.keys(): data[k] = f'{result[k]:.2f}' view.writer.add_scalar(k + '_' + task if task else k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.4f}' view.writer.add_scalar(k + '_' + task if task else k, stat[k].get(), global_step=global_step) t.update(1) t.set_postfix(**data) if t.n <= t.total: t.update() # test brk = False for view in A, B: result = test_episode(view.policy, view.test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch if verbose: print(f'Epoch #{epoch}: test_reward: {result["rew"]:.4f}, ' f'best_reward: {best_reward:.4f} in #{best_epoch}') if view.stop_fn(best_reward): brk = True if brk: break return ( gather_info(start_time, A.train_collector, A.test_collector, best_reward), gather_info(start_time, B.train_collector, B.test_collector, best_reward), )
def offpolicy_trainer( policy: BasePolicy, train_collector: Collector, test_collector: Collector, max_epoch: int, step_per_epoch: int, step_per_collect: int, episode_per_test: int, batch_size: int, update_per_step: Union[int, float] = 1, train_fn: Optional[Callable[[int, int], None]] = None, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, save_checkpoint_fn: Optional[Callable[[int, int, int], None]] = None, resume_from_log: bool = False, reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None, logger: BaseLogger = LazyLogger(), verbose: bool = True, test_in_train: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for off-policy trainer procedure. The "step" in trainer means an environment step (a.k.a. transition). :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param Collector train_collector: the collector used for training. :param Collector test_collector: the collector used for testing. :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching ``max_epoch`` if ``stop_fn`` is set. :param int step_per_epoch: the number of transitions collected per epoch. :param int step_per_collect: the number of transitions the collector would collect before the network update, i.e., trainer will collect "step_per_collect" transitions and do some policy network update repeatly in each epoch. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param int/float update_per_step: the number of times the policy network would be updated per transition after (step_per_collect) transitions are collected, e.g., if update_per_step set to 0.3, and step_per_collect is 256, policy will be updated round(256 * 0.3 = 76.8) = 77 times after 256 transitions are collected by the collector. Default to 1. :param function train_fn: a hook called at the beginning of training in each epoch. It can be used to perform custom additional operations, with the signature ``f( num_epoch: int, step_idx: int) -> None``. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f( num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function save_checkpoint_fn: a function to save training process, with the signature ``f(epoch: int, env_step: int, gradient_step: int) -> None``; you can save whatever you want. :param bool resume_from_log: resume env_step/gradient_step and other metadata from existing tensorboard log. Default to False. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param function reward_metric: a function with signature ``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``, used in multi-agent RL. We need to return a single scalar for each episode's result to monitor training in the multi-agent RL setting. This function specifies what is the desired metric, e.g., the reward of agent 1 or the average reward over all agents. :param BaseLogger logger: A logger that logs statistics during training/testing/updating. Default to a logger that doesn't log anything. :param bool verbose: whether to print the information. Default to True. :param bool test_in_train: whether to test in the training phase. Default to True. :return: See :func:`~tianshou.trainer.gather_info`. """ if save_fn: warnings.warn("Please consider using save_checkpoint_fn instead of save_fn.") start_epoch, env_step, gradient_step = 0, 0, 0 if resume_from_log: start_epoch, env_step, gradient_step = logger.restore_data() last_rew, last_len = 0.0, 0 stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() train_collector.reset_stat() test_collector.reset_stat() test_in_train = test_in_train and train_collector.policy == policy test_result = test_episode(policy, test_collector, test_fn, start_epoch, episode_per_test, logger, env_step, reward_metric) best_epoch = start_epoch best_reward, best_reward_std = test_result["rew"], test_result["rew_std"] for epoch in range(1 + start_epoch, 1 + max_epoch): # train policy.train() with tqdm.tqdm( total=step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config ) as t: while t.n < t.total: if train_fn: train_fn(epoch, env_step) result = train_collector.collect(n_step=step_per_collect) if result["n/ep"] > 0 and reward_metric: result["rews"] = reward_metric(result["rews"]) env_step += int(result["n/st"]) t.update(result["n/st"]) logger.log_train_data(result, env_step) last_rew = result['rew'] if 'rew' in result else last_rew last_len = result['len'] if 'len' in result else last_len data = { "env_step": str(env_step), "rew": f"{last_rew:.2f}", "len": str(int(last_len)), "n/ep": str(int(result["n/ep"])), "n/st": str(int(result["n/st"])), } if result["n/ep"] > 0: if test_in_train and stop_fn and stop_fn(result["rew"]): test_result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test, logger, env_step) if stop_fn(test_result["rew"]): if save_fn: save_fn(policy) logger.save_data( epoch, env_step, gradient_step, save_checkpoint_fn) t.set_postfix(**data) return gather_info( start_time, train_collector, test_collector, test_result["rew"], test_result["rew_std"]) else: policy.train() for i in range(round(update_per_step * result["n/st"])): gradient_step += 1 losses = policy.update(batch_size, train_collector.buffer) for k in losses.keys(): stat[k].add(losses[k]) losses[k] = stat[k].get() data[k] = f"{losses[k]:.3f}" logger.log_update_data(losses, gradient_step) t.set_postfix(**data) if t.n <= t.total: t.update() # test test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, logger, env_step, reward_metric) rew, rew_std = test_result["rew"], test_result["rew_std"] if best_epoch < 0 or best_reward < rew: best_epoch, best_reward, best_reward_std = epoch, rew, rew_std if save_fn: save_fn(policy) logger.save_data(epoch, env_step, gradient_step, save_checkpoint_fn) if verbose: print(f"Epoch #{epoch}: test_reward: {rew:.6f} ± {rew_std:.6f}, best_rew" f"ard: {best_reward:.6f} ± {best_reward_std:.6f} in #{best_epoch}") if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward, best_reward_std)
def offline_trainer( policy: BasePolicy, buffer: ReplayBuffer, test_collector: Collector, max_epoch: int, step_per_epoch: int, episode_per_test: Union[int, List[int]], batch_size: int, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, writer: Optional[SummaryWriter] = None, log_interval: int = 1, verbose: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for offline trainer procedure. The "step" in trainer means a policy network update. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param test_collector: the collector used for testing. :type test_collector: :class:`~tianshou.data.Collector` :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching the ``max_epoch``. :param int step_per_epoch: the number of policy network updates, so-called gradient steps, per epoch. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f(num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard SummaryWriter; if None is given, it will not write logs to TensorBoard. :param int log_interval: the log interval of the writer. :param bool verbose: whether to print the information. :return: See :func:`~tianshou.trainer.gather_info`. """ gradient_step = 0 best_epoch, best_reward, best_reward_std = -1, -1.0, 0.0 stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() test_collector.reset_stat() for epoch in range(1, 1 + max_epoch): policy.train() with tqdm.trange(step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config) as t: for i in t: gradient_step += 1 losses = policy.update(batch_size, buffer) data = {"gradient_step": str(gradient_step)} for k in losses.keys(): stat[k].add(losses[k]) data[k] = f"{stat[k].get():.6f}" if writer and gradient_step % log_interval == 0: writer.add_scalar("train/" + k, stat[k].get(), global_step=gradient_step) t.set_postfix(**data) # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, writer, gradient_step) if best_epoch == -1 or best_reward < result["rew"]: best_reward, best_reward_std = result["rew"], result["rew_std"] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f"Epoch #{epoch}: test_reward: {result['rew']:.6f} ± " f"{result['rew_std']:.6f}, best_reward: {best_reward:.6f} ± " f"{best_reward_std:.6f} in #{best_epoch}") if stop_fn and stop_fn(best_reward): break return gather_info(start_time, None, test_collector, best_reward, best_reward_std)
def offpolicy_trainer( policy: BasePolicy, train_collector: Collector, test_collector: Collector, max_epoch: int, step_per_epoch: int, collect_per_step: int, episode_per_test: Union[int, List[int]], batch_size: int, update_per_step: int = 1, train_fn: Optional[Callable[[int, int], None]] = None, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, writer: Optional[SummaryWriter] = None, log_interval: int = 1, verbose: bool = True, test_in_train: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for off-policy trainer procedure. The "step" in trainer means a policy network update. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param train_collector: the collector used for training. :type train_collector: :class:`~tianshou.data.Collector` :param test_collector: the collector used for testing. :type test_collector: :class:`~tianshou.data.Collector` :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching the ``max_epoch``. :param int step_per_epoch: the number of policy network updates, so-called gradient steps, per epoch. :param int collect_per_step: the number of frames the collector would collect before the network update. In other words, collect some frames and do some policy network update. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param int update_per_step: the number of times the policy network would be updated after frames are collected, for example, set it to 256 means it updates policy 256 times once after ``collect_per_step`` frames are collected. :param function train_fn: a hook called at the beginning of training in each epoch. It can be used to perform custom additional operations, with the signature ``f(num_epoch: int, step_idx: int) -> None``. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f(num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard SummaryWriter; if None is given, it will not write logs to TensorBoard. :param int log_interval: the log interval of the writer. :param bool verbose: whether to print the information. :param bool test_in_train: whether to test in the training phase. :return: See :func:`~tianshou.trainer.gather_info`. """ env_step, gradient_step = 0, 0 best_epoch, best_reward, best_reward_std = -1, -1.0, 0.0 stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() train_collector.reset_stat() test_collector.reset_stat() test_in_train = test_in_train and train_collector.policy == policy for epoch in range(1, 1 + max_epoch): # train policy.train() with tqdm.tqdm(total=step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config) as t: while t.n < t.total: if train_fn: train_fn(epoch, env_step) result = train_collector.collect(n_step=collect_per_step) env_step += int(result["n/st"]) data = { "env_step": str(env_step), "rew": f"{result['rew']:.2f}", "len": str(int(result["len"])), "n/ep": str(int(result["n/ep"])), "n/st": str(int(result["n/st"])), "v/ep": f"{result['v/ep']:.2f}", "v/st": f"{result['v/st']:.2f}", } if writer and env_step % log_interval == 0: for k in result.keys(): writer.add_scalar("train/" + k, result[k], global_step=env_step) if test_in_train and stop_fn and stop_fn(result["rew"]): test_result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, writer, env_step) if stop_fn(test_result["rew"]): if save_fn: save_fn(policy) for k in result.keys(): data[k] = f"{result[k]:.2f}" t.set_postfix(**data) return gather_info(start_time, train_collector, test_collector, test_result["rew"], test_result["rew_std"]) else: policy.train() for i in range(update_per_step * min( result["n/st"] // collect_per_step, t.total - t.n)): gradient_step += 1 losses = policy.update(batch_size, train_collector.buffer) for k in losses.keys(): stat[k].add(losses[k]) data[k] = f"{stat[k].get():.6f}" if writer and gradient_step % log_interval == 0: writer.add_scalar(k, stat[k].get(), global_step=gradient_step) t.update(1) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, writer, env_step) if best_epoch == -1 or best_reward < result["rew"]: best_reward, best_reward_std = result["rew"], result["rew_std"] best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f"Epoch #{epoch}: test_reward: {result['rew']:.6f} ± " f"{result['rew_std']:.6f}, best_reward: {best_reward:.6f} ± " f"{best_reward_std:.6f} in #{best_epoch}") if stop_fn and stop_fn(best_reward): break return gather_info(start_time, train_collector, test_collector, best_reward, best_reward_std)
def imitation_trainer(policy, learner, expert_collector, test_collector, max_epoch, step_per_epoch, collect_per_step, repeat_per_collect, episode_per_test, batch_size, train_fn=None, test_fn=None, stop_fn=None, writer=None, task='', peer=0, peer_decay_steps=0): global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() for epoch in range(1, 1 + max_epoch): # train policy.train() if train_fn: train_fn(epoch) with tqdm.tqdm( total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: expert_collector.collect(n_episode=collect_per_step) result = test_collector.collect(n_episode=episode_per_test) data = {} if stop_fn and stop_fn(result['rew']): for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info( start_time, expert_collector, test_collector, result['rew']) else: policy.train() if train_fn: train_fn(epoch) decay = 1. if not peer_decay_steps else \ max(0., 1 - global_step / peer_decay_steps) losses = learner(policy, expert_collector.sample(0), batch_size, repeat_per_collect, peer * decay) expert_collector.reset_buffer() step = 1 for k in losses.keys(): if isinstance(losses[k], list): step = max(step, len(losses[k])) global_step += step for k in result.keys(): data[k] = f'{result[k]:.2f}' if writer: writer.add_scalar( k + '_' + task if task else k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.6f}' if writer and global_step: writer.add_scalar( k + '_' + task if task else k, stat[k].get(), global_step=global_step) t.update(step) t.set_postfix(**data) if t.n <= t.total: t.update() # test result = test_episode( policy, test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch print(f'Epoch #{epoch}: test_reward: {result["rew"]:.6f}, ' f'best_reward: {best_reward:.6f} in #{best_epoch}') if stop_fn and stop_fn(best_reward): break return gather_info( start_time, expert_collector, test_collector, best_reward)
def onpolicy_trainer_with_views(A, B, max_epoch, step_per_epoch, collect_per_step, repeat_per_collect, episode_per_test, batch_size, copier=False, peer=0, verbose=True, test_fn=None, task='', copier_batch_size=0): global_step = 0 best_epoch, best_reward = -1, -1 stat = {} start_time = time.time() for epoch in range(1, 1 + max_epoch): # train A.train() B.train() with tqdm.tqdm( total=step_per_epoch, desc=f'Epoch #{epoch}', **tqdm_config) as t: while t.n < t.total: for view, other_view in zip([A, B], [B, A]): result = view.train_collector.collect(n_episode=collect_per_step) data = {} if view.stop_fn and view.stop_fn(result['rew']): test_result = test_episode( view.policy, view.test_collector, test_fn, epoch, episode_per_test) if view.stop_fn and view.stop_fn(test_result['rew']): for k in result.keys(): data[k] = f'{result[k]:.2f}' t.set_postfix(**data) return gather_info( start_time, view.train_collector, view.test_collector, test_result['rew']) else: view.train() batch = view.train_collector.sample(0) for obs in batch.obs: view.buffer.add(obs, {}, {}, {}, {}, {}) # only need obs losses = view.policy.learn(batch, batch_size, repeat_per_collect) # Learn from demonstration if copier: copier_batch, indice = view.buffer.sample(copier_batch_size) # copier_batch = view.train_collector.process_fn( # copier_batch, view.buffer, indice) demo = other_view.policy(copier_batch) view.learn_from_demos(copier_batch, demo, peer=peer) view.train_collector.reset_buffer() step = 1 for k in losses.keys(): if isinstance(losses[k], list): step = max(step, len(losses[k])) global_step += step for k in result.keys(): data[k] = f'{result[k]:.2f}' view.writer.add_scalar( k + '_' + task if task else k, result[k], global_step=global_step) for k in losses.keys(): if stat.get(k) is None: stat[k] = MovAvg() stat[k].add(losses[k]) data[k] = f'{stat[k].get():.4f}' if global_step: view.writer.add_scalar( k + '_' + task if task else k, stat[k].get(), global_step=global_step) t.update(step) t.set_postfix(**data) if t.n <= t.total: t.update() # test brk = False for view in A, B: result = test_episode( view.policy, view.test_collector, test_fn, epoch, episode_per_test) if best_epoch == -1 or best_reward < result['rew']: best_reward = result['rew'] best_epoch = epoch if verbose: print(f'Epoch #{epoch}: test_reward: {result["rew"]:.4f}, ' f'best_reward: {best_reward:.4f} in #{best_epoch}') if view.stop_fn(best_reward): brk = True if brk: break return ( gather_info(start_time, A.train_collector, A.test_collector, best_reward), gather_info(start_time, B.train_collector, B.test_collector, best_reward), )