コード例 #1
0
    def test_hawkes_set_timestamps(self):
        """...Test simulation after some timestamps have been set manually
        """
        decay = 0.5
        baseline = [0.2, 0.4]
        adjacency = [[0.2, 0.1], [0, 0.3]]

        hawkes = SimuHawkesExpKernels(
            baseline=baseline, decays=decay, adjacency=adjacency,
            verbose=False, seed=1393)

        # timestamps generated by a hawkes process with the same
        # characteristics simulated up to time 10
        original_timestamps = [
            np.array([7.096244, 9.389927]),
            np.array([0.436199, 0.659153, 2.622352, 3.095093,
                      7.189881, 8.068153, 9.240032]),
        ]

        hawkes.track_intensity(1)
        hawkes.set_timestamps(original_timestamps, 10)
        hawkes.end_time = 100
        hawkes.simulate()

        # Intensity up to time 10 is known
        first_intensities = hawkes.tracked_intensity[0][:10]
        np.testing.assert_array_almost_equal(
            first_intensities,
            [0.2, 0.2447256, 0.27988282, 0.24845138, 0.23549475,
             0.27078386, 0.26749709, 0.27473586, 0.24532959, 0.22749379]
        )

        # Ensure other jumps have occured afterwards
        self.assertGreater(hawkes.n_total_jumps,
                           sum(map(len, original_timestamps)))
コード例 #2
0
    def simulate(self):
        n_nodes = 1
        baseline = [0.1]
        adjacency = [[0.1]]

        end_time = 10000
        # max_jumps=1000;
        a_sim = SimuHawkesExpKernels(adjacency,
                                     decays,
                                     baseline=baseline,
                                     end_time=end_time,
                                     verbose=True)
        a_sim.track_intensity(0.01)

        a_sim.simulate()
        # print(a_sim.timestamps)

        # print('Tracked intensity: ', a_sim.tracked_intensity)

        with open('sample_timestamps.txt', 'w') as f:
            f.write(str(list(a_sim.timestamps[0])))
コード例 #3
0
period_length = 100
t_values = np.linspace(0, period_length)
y_values = 0.2 * np.maximum(np.sin(t_values *
                                   (2 * np.pi) / period_length), 0.2)
baselines = np.array(
    [TimeFunction((t_values, y_values), border_type=TimeFunction.Cyclic)])

decay = 0.1
adjacency = np.array([[0.5]])

hawkes = SimuHawkesExpKernels(adjacency,
                              decay,
                              baseline=baselines,
                              seed=2093,
                              verbose=False)
hawkes.track_intensity(0.1)
hawkes.end_time = 6 * period_length
hawkes.simulate()

fig, ax = plt.subplots(1, 1, figsize=(10, 4))

plot_point_process(hawkes, ax=ax)

t_values = np.linspace(0, hawkes.end_time, 1000)
ax.plot(t_values,
        hawkes.get_baseline_values(0, t_values),
        label='baseline',
        ls='--',
        lw=1)
ax.set_ylabel("$\lambda(t)$", fontsize=18)
ax.legend()
コード例 #4
0
class Test(unittest.TestCase):
    def setUp(self):
        np.random.seed(23982)
        self.n_nodes = 3
        self.baseline = np.random.rand(self.n_nodes)
        self.adjacency = np.random.rand(self.n_nodes, self.n_nodes) / 2
        self.decays = np.random.rand(self.n_nodes, self.n_nodes)

        self.adjacency[0, 0] = 0
        self.adjacency[-1, -1] = 0

        self.hawkes = SimuHawkesExpKernels(self.adjacency,
                                           self.decays,
                                           baseline=self.baseline,
                                           seed=203,
                                           verbose=False)

    def test_hawkes_exponential_kernels(self):
        """...Test creation of a Hawkes Process with exponential kernels
        """

        kernel_0 = None
        for i, j in product(range(self.n_nodes), range(self.n_nodes)):
            kernel_ij = self.hawkes.kernels[i, j]

            if self.adjacency[i, j] == 0:
                self.assertEqual(kernel_ij.__class__, HawkesKernel0)

                # We check that all 0 adjacency share the same kernel 0
                # This might save lots of memory with very large,
                # very sparse adjacency matrices
                if kernel_0 is None:
                    kernel_0 = kernel_ij
                else:
                    self.assertEqual(kernel_0, kernel_ij)

            else:
                self.assertEqual(kernel_ij.__class__, HawkesKernelExp)
                self.assertEqual(kernel_ij.decay, self.decays[i, j])
                self.assertEqual(kernel_ij.intensity, self.adjacency[i, j])

        np.testing.assert_array_equal(self.baseline, self.hawkes.baseline)

    def test_hawkes_spectral_radius_exp_kernel(self):
        """...Hawkes Process spectral radius and adjust spectral radius
        methods
        """
        self.assertAlmostEqual(self.hawkes.spectral_radius(),
                               0.6645446549735008)

        self.hawkes.adjust_spectral_radius(0.6)
        self.assertAlmostEqual(self.hawkes.spectral_radius(), 0.6)

    def test_hawkes_mean_intensity(self):
        """...Test that Hawkes obtained mean intensity is consistent
        """

        self.assertLess(self.hawkes.spectral_radius(), 1)

        self.hawkes.end_time = 1000
        self.hawkes.track_intensity(0.01)
        self.hawkes.simulate()

        mean_intensity = self.hawkes.mean_intensity()
        for i in range(self.hawkes.n_nodes):
            self.assertAlmostEqual(np.mean(self.hawkes.tracked_intensity[i]),
                                   mean_intensity[i],
                                   delta=0.1)