def test_model_hawkes_loglik_change_decays(self): """...Test that loss is still consistent after decays modification in ModelHawkesFixedExpKernLogLik """ decay = np.random.rand() self.assertNotEqual(decay, self.decay) model_change_decay = ModelHawkesFixedExpKernLogLik(decay=decay) model_change_decay.fit(self.timestamps_list) loss_old_decay = model_change_decay.loss(self.coeffs) model_change_decay.decay = self.decay self.assertNotEqual(loss_old_decay, model_change_decay.loss(self.coeffs)) self.assertEqual(self.model_list.loss(self.coeffs), model_change_decay.loss(self.coeffs))
def test_model_hawkes_loglik_incremental_fit(self): """...Test that multiple events list for ModelHawkesFixedExpKernLogLik are correctly handle with incremental_fit """ model_incremental_fit = ModelHawkesFixedExpKernLogLik(decay=self.decay) for timestamps in self.timestamps_list: model_incremental_fit.incremental_fit(timestamps) self.assertEqual(model_incremental_fit.loss(self.coeffs), self.model_list.loss(self.coeffs))
def score(self, events=None, end_times=None, baseline=None, adjacency=None): """Compute score metric Score metric is log likelihood (the higher the better) Parameters ---------- events : `list` of `list` of `np.ndarray`, default = None List of Hawkes processes realizations used to measure score. Each realization of the Hawkes process is a list of n_node for each component of the Hawkes. Namely `events[i][j]` contains a one-dimensional `numpy.array` of the events' timestamps of component j of realization i. If only one realization is given, it will be wrapped into a list If None, events given while fitting model will be used end_times : `np.ndarray` or `float`, default = None List of end time of all hawkes processes used to measure score. If None, it will be set to each realization's latest time. If only one realization is provided, then a float can be given. baseline : `np.ndarray`, shape=(n_nodes, ), default = None Baseline vector for which the score is measured If `None` baseline obtained during fitting is used adjacency : `np.ndarray`, shape=(n_nodes, n_nodes), default = None Adjacency matrix for which the score is measured If `None` adjacency obtained during fitting is used Returns ------- likelihood : `double` Computed log likelihood value """ if events is None and not self._fitted: raise ValueError('You must either call `fit` before `score` or ' 'provide events') if baseline is not None or adjacency is not None: if baseline is None: baseline = self.baseline if adjacency is None: adjacency = self.adjacency coeffs = np.hstack((baseline, adjacency.ravel())) else: coeffs = self.coeffs if events is None and end_times is None: model = self._model else: model = ModelHawkesFixedExpKernLogLik(self.decay, n_threads=self.n_threads) model.fit(events, end_times) return - model.loss(coeffs)
class Test(unittest.TestCase): def setUp(self): np.random.seed(30732) self.n_nodes = 3 self.n_realizations = 2 self.decay = np.random.rand() self.timestamps_list = [ [np.cumsum(np.random.random(np.random.randint(3, 7))) for _ in range(self.n_nodes)] for _ in range(self.n_realizations)] self.end_time = 10 self.baseline = np.random.rand(self.n_nodes) self.adjacency = np.random.rand(self.n_nodes, self.n_nodes) self.coeffs = np.hstack((self.baseline, self.adjacency.ravel())) self.realization = 0 self.model = ModelHawkesFixedExpKernLogLik(self.decay) self.model.fit(self.timestamps_list[self.realization], end_times=self.end_time) self.model_list = ModelHawkesFixedExpKernLogLik(self.decay) self.model_list.fit(self.timestamps_list) def test_model_hawkes_losses(self): """...Test that computed losses are consistent with approximated theoretical values """ timestamps = self.timestamps_list[self.realization] decays = np.ones((self.n_nodes, self.n_nodes)) * self.decay intensities = hawkes_exp_kernel_intensities( self.baseline, decays, self.adjacency, timestamps) precision = 3 integral_approx = hawkes_log_likelihood( intensities, timestamps, self.end_time, precision=precision) integral_approx /= self.model.n_jumps self.assertAlmostEqual(integral_approx, self.model.loss(self.coeffs), places=precision) def test_model_hawkes_loglik_multiple_events(self): """...Test that multiple events list for ModelHawkesFixedExpKernLogLik is consistent with direct integral estimation """ end_times = np.array([max(map(max, e)) for e in self.timestamps_list]) end_times += 1. self.model_list.fit(self.timestamps_list, end_times=end_times) decays = np.ones((self.n_nodes, self.n_nodes)) * self.decay intensities_list = [ hawkes_exp_kernel_intensities(self.baseline, decays, self.adjacency, timestamps) for timestamps in self.timestamps_list ] integral_approx = sum([hawkes_log_likelihood(intensities, timestamps, end_time) for (intensities, timestamps, end_time) in zip( intensities_list, self.timestamps_list, self.model_list.end_times )]) integral_approx /= self.model_list.n_jumps self.assertAlmostEqual(integral_approx, self.model_list.loss(self.coeffs), places=2) def test_model_hawkes_loglik_incremental_fit(self): """...Test that multiple events list for ModelHawkesFixedExpKernLogLik are correctly handle with incremental_fit """ model_incremental_fit = ModelHawkesFixedExpKernLogLik(decay=self.decay) for timestamps in self.timestamps_list: model_incremental_fit.incremental_fit(timestamps) self.assertEqual(model_incremental_fit.loss(self.coeffs), self.model_list.loss(self.coeffs)) def test_model_hawkes_loglik_grad(self): """...Test that ModelHawkesFixedExpKernLeastSq gradient is consistent with loss """ self.assertLess(check_grad(self.model.loss, self.model.grad, self.coeffs), 1e-5) def test_model_hawkes_loglik_hessian_norm(self): """...Test that ModelHawkesFixedExpKernLeastSq hessian norm is consistent with gradient """ self.assertLess(check_grad(self.model.loss, self.model.grad, self.coeffs), 1e-5) def test_hawkesgrad_hess_norm(self): """...Test if grad and log likelihood are correctly computed """ hessian_point = np.random.rand(self.model.n_coeffs) vector = np.random.rand(self.model.n_coeffs) delta = 1e-7 grad_point_minus = self.model.grad(hessian_point + delta * vector) grad_point_plus = self.model.grad(hessian_point - delta * vector) finite_diff_result = vector.dot(grad_point_minus - grad_point_plus) finite_diff_result /= (2 * delta) self.assertAlmostEqual(finite_diff_result, self.model.hessian_norm(hessian_point, vector)) def test_model_hawkes_loglik_change_decays(self): """...Test that loss is still consistent after decays modification in ModelHawkesFixedExpKernLogLik """ decay = np.random.rand() self.assertNotEqual(decay, self.decay) model_change_decay = ModelHawkesFixedExpKernLogLik(decay=decay) model_change_decay.fit(self.timestamps_list) loss_old_decay = model_change_decay.loss(self.coeffs) model_change_decay.decay = self.decay self.assertNotEqual(loss_old_decay, model_change_decay.loss(self.coeffs)) self.assertEqual(self.model_list.loss(self.coeffs), model_change_decay.loss(self.coeffs)) def test_hawkes_list_n_threads(self): """...Test that the number of used threads is as expected """ model_list = ModelHawkesFixedExpKernLogLik(decay=self.decay, n_threads=1) # 0 threads yet as no data has been given self.assertEqual(model_list._model.get_n_threads(), 0) # Now that it has been fitted it equals # min(n_threads, n_nodes * n_realizations) model_list.fit(self.timestamps_list) self.assertEqual(model_list._model.get_n_threads(), 1) model_list.n_threads = 8 self.assertEqual(model_list._model.get_n_threads(), 6) realization_2_nodes = [np.array([3., 4.]), np.array([3.5, 6.])] model_list.fit(realization_2_nodes) self.assertEqual(model_list._model.get_n_threads(), 2) model_list.n_threads = 1 self.assertEqual(model_list._model.get_n_threads(), 1)
class HawkesADM4(LearnerHawkesNoParam): """A class that implements parametric inference for Hawkes processes with an exponential parametrisation of the kernels and a mix of Lasso and nuclear regularization Hawkes processes are point processes defined by the intensity: .. math:: \\forall i \\in [1 \\dots D], \\quad \\lambda_i(t) = \\mu_i + \\sum_{j=1}^D \\sum_{t_k^j < t} \\phi_{ij}(t - t_k^j) where * :math:`D` is the number of nodes * :math:`\mu_i` are the baseline intensities * :math:`\phi_{ij}` are the kernels * :math:`t_k^j` are the timestamps of all events of node :math:`j` and with an exponential parametrisation of the kernels .. math:: \phi_{ij}(t) = \\alpha^{ij} \\beta \exp (- \\beta t) 1_{t > 0} In our implementation we denote: * Integer :math:`D` by the attribute `n_nodes` * Vector :math:`\mu \in \mathbb{R}^{D}` by the attribute `baseline` * Matrix :math:`A = (\\alpha^{ij})_{ij} \in \mathbb{R}^{D \\times D}` by the attribute `adjacency` * Number :math:`\\beta \in \mathbb{R}` by the parameter `decay`. This parameter is given to the model Parameters ---------- decay : `float` The decay used in the exponential kernel C : `float`, default=1e3 Level of penalization lasso_nuclear_ratio : `float`, default=0.5 Ratio of Lasso-Nuclear regularization mixing parameter with 0 <= ratio <= 1. * For ratio = 0 this is nuclear regularization * For ratio = 1 this is lasso (L1) regularization * For 0 < ratio < 1, the regularization is a linear combination of Lasso and nuclear. max_iter : `int`, default=50 Maximum number of iterations of the solving algorithm tol : `float`, default=1e-5 The tolerance of the solving algorithm (iterations stop when the stopping criterion is below it). If not reached it does ``max_iter`` iterations verbose : `bool`, default=False If `True`, we verbose things n_threads : `int`, default=1 Number of threads used for parallel computation. * if `int <= 0`: the number of physical cores available on the CPU * otherwise the desired number of threads print_every : `int`, default=10 Print history information when ``n_iter`` (iteration number) is a multiple of ``print_every`` record_every : `int`, default=10 Record history information when ``n_iter`` (iteration number) is a multiple of ``record_every`` Other Parameters ---------------- rho : `float`, default=0.1 Positive parameter of the augmented Lagrangian. Called penalty parameter, the higher it is, the more strict will be the penalization. approx : `int`, default=0 (read-only) Level of approximation used for computing exponential functions * if 0: no approximation * if 1: a fast approximated exponential function is used em_max_iter : `int`, default=30 Maximum number of loop for inner em algorithm. em_tol : `float`, default=None Tolerance of loop for inner em algorithm. If relative difference of baseline and adjacency goes bellow this tolerance, em inner loop will stop. If None, it will be set given a heuristic which look at last relative difference obtained in the main loop. Attributes ---------- n_nodes : `int` Number of nodes / components in the Hawkes model baseline : `np.array`, shape=(n_nodes,) Inferred baseline of each component's intensity adjacency : `np.ndarray`, shape=(n_nodes, n_nodes) Inferred adjacency matrix References ---------- Zhou, K., Zha, H., & Song, L. (2013, May). Learning Social Infectivity in Sparse Low-rank Networks Using Multi-dimensional Hawkes Processes. In `AISTATS (Vol. 31, pp. 641-649) <http://www.jmlr.org/proceedings/papers/v31/zhou13a.pdf>`_. """ _attrinfos = { "_learner": { "writable": False }, "_model": { "writable": False }, "decay": { "cpp_setter": "set_decay" }, "rho": { "cpp_setter": "set_rho" }, "_C": { "writable": False }, "baseline": { "writable": False }, "adjacency": { "writable": False }, "_prox_l1": { "writable": False }, "_prox_nuclear": { "writable": False }, "_lasso_nuclear_ratio": { "writable": False }, "approx": { "writable": False } } def __init__(self, decay, C=1e3, lasso_nuclear_ratio=0.5, max_iter=50, tol=1e-5, n_threads=1, verbose=False, print_every=10, record_every=10, rho=.1, approx=0, em_max_iter=30, em_tol=None): LearnerHawkesNoParam.__init__(self, verbose=verbose, max_iter=max_iter, print_every=print_every, tol=tol, n_threads=n_threads, record_every=record_every) self.baseline = None self.adjacency = None self._C = 0 self._lasso_nuclear_ratio = 0 self.decay = decay self.rho = rho self._prox_l1 = ProxL1(1.) self._prox_nuclear = ProxNuclear(1.) self.C = C self.lasso_nuclear_ratio = lasso_nuclear_ratio self.verbose = verbose self.em_max_iter = em_max_iter self.em_tol = em_tol self._learner = _HawkesADM4(decay, rho, n_threads, approx) # TODO add approx to model self._model = ModelHawkesFixedExpKernLogLik(self.decay, n_threads=self.n_threads) self.history.print_order += ["rel_baseline", "rel_adjacency"] def fit(self, events, end_times=None, baseline_start=None, adjacency_start=None): """Fit the model according to the given training data. Parameters ---------- events : `list` of `list` of `np.ndarray` List of Hawkes processes realizations. Each realization of the Hawkes process is a list of n_node for each component of the Hawkes. Namely `events[i][j]` contains a one-dimensional `numpy.array` of the events' timestamps of component j of realization i. If only one realization is given, it will be wrapped into a list end_times : `np.ndarray` or `float`, default = None List of end time of all hawkes processes that will be given to the model. If None, it will be set to each realization's latest time. If only one realization is provided, then a float can be given. baseline_start : `None` or `np.ndarray`, shape=(n_nodes) Set initial value of baseline parameter If `None` starts with uniform 1 values adjacency_start : `None` or `np.ndarray`, shape=(n_nodes, n_nodes) Set initial value of adjacency parameter If `None` starts with random values uniformly sampled between 0.5 and 0.9` """ LearnerHawkesNoParam.fit(self, events, end_times=end_times) self.solve(baseline_start=baseline_start, adjacency_start=adjacency_start) return self def _set_data(self, events: list): """Set the corresponding realization(s) of the process. Parameters ---------- events : `list` of `list` of `np.ndarray` List of Hawkes processes realizations. Each realization of the Hawkes process is a list of n_node for each component of the Hawkes. Namely `events[i][j]` contains a one-dimensional `numpy.array` of the events' timestamps of component j of realization i. If only one realization is given, it will be wrapped into a list """ LearnerHawkesNoParam._set_data(self, events) events, end_times = self._clean_events_and_endtimes(events) self._model.fit(events, end_times=end_times) self._prox_nuclear.n_rows = self.n_nodes def _solve(self, baseline_start=None, adjacency_start=None): """Perform one iteration of the algorithm Parameters ---------- baseline_start : `None` or `np.ndarray`, shape=(n_nodes) Set initial value of baseline parameter If `None` starts with uniform 1 values adjacency_start : `None` or `np.ndarray', shape=(n_nodes, n_nodes) Set initial value of adjacency parameter If `None` starts with random values uniformly sampled between 0.5 and 0.9 """ if baseline_start is None: baseline_start = np.ones(self.n_nodes) self._set('baseline', baseline_start.copy()) if adjacency_start is None: adjacency_start = np.random.uniform(0.5, 0.9, (self.n_nodes, self.n_nodes)) self._set('adjacency', adjacency_start.copy()) z1 = np.zeros_like(self.adjacency) z2 = np.zeros_like(self.adjacency) u1 = np.zeros_like(self.adjacency) u2 = np.zeros_like(self.adjacency) if self.rho <= 0: raise ValueError("The parameter rho equals {}, while it should " "be strictly positive.".format(self.rho)) objective = self.objective(self.coeffs) max_relative_distance = 1e-1 for i in range(self.max_iter + 1): prev_objective = objective prev_baseline = self.baseline.copy() prev_adjacency = self.adjacency.copy() for _ in range(self.em_max_iter): inner_prev_baseline = self.baseline.copy() inner_prev_adjacency = self.adjacency.copy() self._learner.solve(self.baseline, self.adjacency, z1, z2, u1, u2) inner_rel_baseline = relative_distance(self.baseline, inner_prev_baseline) inner_rel_adjacency = relative_distance( self.adjacency, inner_prev_adjacency) if self.em_tol is None: inner_tol = max_relative_distance * 1e-2 else: inner_tol = self.em_tol if max(inner_rel_baseline, inner_rel_adjacency) < inner_tol: break z1 = self._prox_nuclear.call(np.ravel(self.adjacency + u1), step=1. / self.rho) \ .reshape(self.n_nodes, self.n_nodes) z2 = self._prox_l1.call(np.ravel(self.adjacency + u2), step=1. / self.rho) \ .reshape(self.n_nodes, self.n_nodes) u1 += self.adjacency - z1 u2 += self.adjacency - z2 objective = self.objective(self.coeffs) rel_obj = abs(objective - prev_objective) / abs(prev_objective) rel_baseline = relative_distance(self.baseline, prev_baseline) rel_adjacency = relative_distance(self.adjacency, prev_adjacency) max_relative_distance = max(rel_baseline, rel_adjacency) # We perform at least 5 iterations as at start we sometimes reach a # low tolerance if inner_tol is too low converged = max_relative_distance <= self.tol and i > 5 force_print = (i == self.max_iter) or converged self._handle_history(i, obj=objective, rel_obj=rel_obj, rel_baseline=rel_baseline, rel_adjacency=rel_adjacency, force=force_print) if converged: break def objective(self, coeffs, loss: float = None): """Compute the objective minimized by the learner at `coeffs` Parameters ---------- coeffs : `numpy.ndarray`, shape=(n_coeffs,) The objective is computed at this point loss : `float`, default=`None` Gives the value of the loss if already known (allows to avoid its computation in some cases) Returns ------- output : `float` Value of the objective at given `coeffs` Notes ----- Because of the auxiliary variables, the expression of the truly optimized objective is a bit modified. Hence this objective value might not reach its exact minimum especially for high penalization levels. """ if loss is None: loss = self._model.loss(coeffs) return loss + \ self._prox_l1.value(self.adjacency.ravel()) + \ self._prox_nuclear.value(self.adjacency.ravel()) @property def coeffs(self): return np.hstack((self.baseline, self.adjacency.ravel())) @property def C(self): return self._C @C.setter def C(self, val): if val < 0 or val is None: raise ValueError("`C` must be positive, got %s" % str(val)) else: self._set("_C", val) self._prox_l1.strength = self.strength_lasso self._prox_nuclear.strength = self.strength_nuclear @property def lasso_nuclear_ratio(self): return self._lasso_nuclear_ratio @lasso_nuclear_ratio.setter def lasso_nuclear_ratio(self, val): if val < 0 or val > 1: raise ValueError("`lasso_nuclear_ratio` must be between 0 and 1, " "got %s" % str(val)) else: self._set("_lasso_nuclear_ratio", val) self._prox_l1.strength = self.strength_lasso self._prox_nuclear.strength = self.strength_nuclear @property def strength_lasso(self): return self.lasso_nuclear_ratio / self.C @property def strength_nuclear(self): return (1 - self.lasso_nuclear_ratio) / self.C def _corresponding_simu(self): """Create simulation object corresponding to the obtained coefficients """ return SimuHawkesExpKernels(adjacency=self.adjacency, decays=self.decay, baseline=self.baseline) def get_kernel_supports(self): """Computes kernel support. This makes our learner compliant with `tick.plot.plot_hawkes_kernels` API Returns ------- output : `np.ndarray`, shape=(n_nodes, n_nodes) 2d array in which each entry i, j corresponds to the support of kernel i, j """ corresponding_simu = self._corresponding_simu() get_support = np.vectorize(lambda kernel: kernel.get_plot_support()) return get_support(corresponding_simu.kernels) def get_kernel_values(self, i, j, abscissa_array): """Computes value of the specified kernel on given time values. This makes our learner compliant with `tick.plot.plot_hawkes_kernels` API Parameters ---------- i : `int` First index of the kernel j : `int` Second index of the kernel abscissa_array : `np.ndarray`, shape=(n_points, ) 1d array containing all the times at which this kernel will computes it value Returns ------- output : `np.ndarray`, shape=(n_points, ) 1d array containing the values of the specified kernels at the given times. """ corresponding_simu = self._corresponding_simu() return corresponding_simu.kernels[i, j].get_values(abscissa_array) def get_kernel_norms(self): """Computes kernel norms. This makes our learner compliant with `tick.plot.plot_hawkes_kernel_norms` API Returns ------- norms : `np.ndarray`, shape=(n_nodes, n_nodes) 2d array in which each entry i, j corresponds to the norm of kernel i, j """ corresponding_simu = self._corresponding_simu() get_norm = np.vectorize(lambda kernel: kernel.get_norm()) return get_norm(corresponding_simu.kernels)