コード例 #1
0
    def setUp(self):
        np.random.seed(28374)

        self.kernels = np.array([
            [HawkesKernel0(), HawkesKernelExp(0.1, 3)],
            [HawkesKernelPowerLaw(0.2, 4, 2),
             HawkesKernelSumExp([0.1, 0.4], [3, 4])]
        ])

        self.baseline = np.random.rand(2)
コード例 #2
0
ファイル: hawkes_test.py プロジェクト: cderemble/tick
    def setUp(self):
        np.random.seed(28374)

        self.kernels = np.array([
            [HawkesKernel0(), HawkesKernelExp(0.1, 3)],
            [HawkesKernelPowerLaw(0.2, 4, 2),
             HawkesKernelSumExp([0.1, 0.4], [3, 4])]
        ])

        t_values = np.linspace(0, 10, 10)
        y_values = np.maximum(0.5 + np.sin(t_values), 0)
        self.time_func_kernel = HawkesKernelTimeFunc(t_values=t_values,
                                                     y_values=y_values)

        self.baseline = np.random.rand(2)
コード例 #3
0
ファイル: hawkes_test.py プロジェクト: jayeshchoudhari/tick
    def test_hawkes_negative_intensity_fail(self):
        """...Test simulation with negative kernel without threshold_negative_intensity
        """
        run_time = 40

        hawkes = SimuHawkes(n_nodes=1,
                            end_time=run_time,
                            verbose=False,
                            seed=1398)
        kernel = HawkesKernelExp(-1.3, .8)
        hawkes.set_kernel(0, 0, kernel)
        hawkes.set_baseline(0, 0.3)

        msg = 'Simulation stopped because intensity went negative ' \
              '\(you could call ``threshold_negative_intensity`` to allow it\)'
        with self.assertRaisesRegex(RuntimeError, msg):
            hawkes.simulate()
コード例 #4
0
ファイル: hawkes_test.py プロジェクト: cderemble/tick
    def test_simu_hawkes_force_simulation(self):
        """...Test force_simulation parameter of SimuHawkes
        """
        diverging_kernel = [[HawkesKernelExp(2, 3)]]
        hawkes = SimuHawkes(kernels=diverging_kernel, baseline=[1],
                            verbose=False)
        hawkes.end_time = 10

        msg = '^Simulation not launched as this Hawkes process is not ' \
              'stable \(spectral radius of 2\). You can use ' \
              'force_simulation parameter if you really want to simulate it$'
        with self.assertRaisesRegex(ValueError, msg):
            hawkes.simulate()

        msg = "^This process has already be simulated until time 0.000000$"
        with self.assertWarnsRegex(UserWarning, msg):
            hawkes.end_time = 0
            hawkes.force_simulation = True
            hawkes.simulate()
コード例 #5
0
ファイル: hawkes_test.py プロジェクト: jayeshchoudhari/tick
    def test_hawkes_negative_intensity(self):
        """...Test simulation with negative kernel
        """
        run_time = 40

        hawkes = SimuHawkes(n_nodes=1,
                            end_time=run_time,
                            verbose=False,
                            seed=1398)
        kernel = HawkesKernelExp(-1.3, .8)
        hawkes.set_kernel(0, 0, kernel)
        hawkes.set_baseline(0, 0.3)
        hawkes.threshold_negative_intensity()

        dt = 0.1
        hawkes.track_intensity(dt)
        hawkes.simulate()

        self.assertAlmostEqual(hawkes.tracked_intensity[0].min(), 0)
        self.assertAlmostEqual(hawkes.tracked_intensity[0].max(),
                               hawkes.baseline[0])
        self.assertGreater(hawkes.n_total_jumps, 1)
コード例 #6
0
                   inter_mode=TimeFunction.InterConstRight,
                   dt=0.1)
kernel1 = HawkesKernelTimeFunc(tf1)

t_values2 = np.linspace(0, 4, 20)
y_values2 = np.maximum(0., np.sin(t_values2) / 4)
tf2 = TimeFunction([t_values2, y_values2])
kernel2 = HawkesKernelTimeFunc(tf2)

baseline = np.array([0.1, 0.3])

hawkes = SimuHawkes(baseline=baseline,
                    end_time=run_time,
                    verbose=False,
                    seed=2334)

hawkes.set_kernel(0, 0, kernel1)
hawkes.set_kernel(0, 1, HawkesKernelExp(.5, .7))
hawkes.set_kernel(1, 1, kernel2)

hawkes.simulate()

em = HawkesEM(4, kernel_size=16, n_threads=8, verbose=False, tol=1e-3)
em.fit(hawkes.timestamps)

fig = plot_hawkes_kernels(em, hawkes=hawkes, show=False)

for ax in fig.axes:
    ax.set_ylim([0, 1])
plt.show()
コード例 #7
0
import numpy as np
import matplotlib.pyplot as plt

from tick.simulation import HawkesKernel0, HawkesKernelExp, \
    HawkesKernelPowerLaw, HawkesKernelTimeFunc

kernel_0 = HawkesKernel0()
kernel_exp = HawkesKernelExp(.7, 1.3)
kernel_pl = HawkesKernelPowerLaw(.1, .2, 0.7)

t_values = np.array([0, 1, 1.5, 1.8, 2.7])
y_values = np.array([0, .6, .34, .2, .1])
kernel_tf = HawkesKernelTimeFunc(t_values=t_values, y_values=y_values)

kernels = [[kernel_0, kernel_exp], [kernel_pl, kernel_tf]]

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(10, 4))

t_values = np.linspace(0, 3, 100)
for i in range(2):
    for j in range(2):
        ax[i, j].plot(t_values,
                      kernels[i][j].get_values(t_values),
                      label=kernels[i][j])
        ax[i, j].legend()

plt.show()
コード例 #8
0
from tick.simulation import (SimuHawkes, SimuHawkesMulti, HawkesKernelExp,
                             HawkesKernelTimeFunc, HawkesKernelPowerLaw,
                             HawkesKernel0)
from tick.inference import HawkesSumGaussians

end_time = 1000
n_nodes = 2
n_realizations = 10
n_gaussians = 5

timestamps_list = []

kernel_timefunction = HawkesKernelTimeFunc(
    t_values=np.array([0., .7, 2.5, 3., 4.]),
    y_values=np.array([.3, .03, .03, .2, 0.]))
kernels = [[HawkesKernelExp(.2, 2.),
            HawkesKernelPowerLaw(.2, .5, 1.3)],
           [HawkesKernel0(), kernel_timefunction]]

hawkes = SimuHawkes(baseline=[.5, .2],
                    kernels=kernels,
                    end_time=end_time,
                    verbose=False,
                    seed=1039)

multi = SimuHawkesMulti(hawkes, n_simulations=n_realizations)

multi.simulate()

learner = HawkesSumGaussians(n_gaussians, max_iter=10)
learner.fit(multi.timestamps)
コード例 #9
0
t_values = np.array([0, 1, 1.5], dtype=float)
y_values = np.array([0, .2, 0], dtype=float)
tf1 = TimeFunction([t_values, y_values],
                   inter_mode=TimeFunction.InterConstRight,
                   dt=0.1)
kernel_1 = HawkesKernelTimeFunc(tf1)

t_values = np.array([0, .1, 2], dtype=float)
y_values = np.array([0, .4, -0.2], dtype=float)
tf2 = TimeFunction([t_values, y_values],
                   inter_mode=TimeFunction.InterLinear,
                   dt=0.1)
kernel_2 = HawkesKernelTimeFunc(tf2)

hawkes = SimuHawkes(kernels=[[kernel_1, kernel_1],
                             [HawkesKernelExp(.07, 4), kernel_2]],
                    baseline=[1.5, 1.5],
                    verbose=False,
                    seed=23983)

run_time = 40
dt = 0.01
hawkes.track_intensity(dt)
hawkes.end_time = run_time
hawkes.simulate()

fig, ax = plt.subplots(hawkes.n_nodes, 1, figsize=(14, 8))
plot_point_process(hawkes, t_max=20, ax=ax)

plt.show()