コード例 #1
0
ファイル: server_main.py プロジェクト: rainy008/12306captcha
def get_frame():
    tic = tc()
    print('----------------------------------------------------------------')
    log_time = time.strftime('%Y-%m-%d %H:%M:%S')
    print(log_time)

    cap_file = request.files['image']
    cap_img = Image.open(cap_file)
    word_ind, objs_ind = model.predict(cap_img)

    Result = {'Result': []}
    for i, ind in enumerate(objs_ind):
        if ind == word_ind[0]:
            Result['Result'].append(i + 1)
    if Result['Result'].__len__() <= 0:
        Result['Result'].append(np.random.randint(1, 9))
    print(classes[word_ind[0]], Result['Result'])

    pic = log_time.replace(' ', '').replace('-', '').replace(
        ':', '') + '_' + classes[word_ind[0]] + '_' + '_'.join(
            [str(v) for v in Result['Result']]) + '.png'
    print(pic)
    cap_img.save(os.path.join(logdir, pic))
    print('fetch time: {:.5f} s.'.format(tc() - tic))
    print('----------------------------------------------------------------\n')
    return json.dumps(Result)
コード例 #2
0
def crack_captcha(captcha_img):

    tic = tc()
    print("模型加载完毕")
    word_ind, objs_ind = model.predict(captcha_img)
    word = classes[word_ind]
    objs = classes[objs_ind]
    print(unicode(word[0], "utf-8"), objs[0])

    print('time elapsed:{:.2f}'.format(tc()-tic))
    return word[0]
コード例 #3
0
ファイル: utils.py プロジェクト: kiclent/pointSeg
def file_merge(src_path, dst_path, batch_size=100, is_training=True):
    intensity_path = os.path.join(src_path, 'intensity')
    pts_path = os.path.join(src_path, 'pts')
    category_path = os.path.join(src_path, 'category')

    fns = [fn for fn in os.listdir(pts_path) if fn[-4:] == '.csv']
    n_files = len(fns)

    flame_index = 0
    tic = tc()
    for batch_i in range(int(np.ceil(n_files / batch_size))):
        print('batch: {}/{} {:.2f}s.'.format(batch_i + 1, round(n_files / batch_size + 0.5), tc() - tic))
        start = batch_i * batch_size
        end = start + batch_size

        index, pts, intensity, category = [], [], [], []
        test_fn_index = []
        for fn in fns[start:end]:
            tmp1 = np.loadtxt(os.path.join(pts_path, fn), dtype=np.float32, delimiter=',')
            pts.append(tmp1)
            tmp2 = np.loadtxt(os.path.join(intensity_path, fn), dtype=np.float32).reshape((-1, 1))
            intensity.append(tmp2)
            if is_training:
                category.append(np.loadtxt(os.path.join(category_path, fn), dtype=np.float32).reshape((-1, 1)))
            index.append(flame_index*np.ones_like(tmp2, np.float32))
            test_fn_index.append([flame_index, fn])
            flame_index += 1

        index = np.vstack(index)
        pts = np.vstack(pts)
        intensity = np.vstack(intensity)
        if is_training:
            category = np.vstack(category)
            merged_data = np.hstack((index, pts, intensity, category))
            save_path = os.path.join(dst_path, 'train_batch_{}.npy'.format(str(batch_i)))
        else:
            merged_data = np.hstack((index, pts, intensity))
            save_path = os.path.join(dst_path, 'test_batch_{}.npy'.format(str(batch_i)))
            pd.DataFrame(test_fn_index).to_csv(
                os.path.join(dst_path, 'test_batch_{}.name'.format(str(batch_i))),
                header=None,
                index=False,
                encoding='utf-8'
            )

        np.float32(merged_data).tofile(save_path)
コード例 #4
0
with tf.Session() as sess:

    saver = tf.train.Saver(tf.global_variables(), max_to_keep=20)
    sess.run(init)

    # tensorboard 可视化
    merged = tf.summary.merge_all()
    summary_writer_train = tf.summary.FileWriter('logs/train', sess.graph)
    summary_writer_test = tf.summary.FileWriter('logs/test')

    for epoch in range(1, total_epochs + 1):
        if epoch in reduce_lr_epoch:
            epoch_learning_rate /= 10

        # 训练
        tic = tc()
        train_acc, train_loss = train_epoch(sess, epoch_learning_rate)
        train_time = tc() - tic

        # 测试
        test_acc, test_loss = eva(sess)

        print('\nepoch: {}, training time: {:.0f} s.'.format(
            epoch, train_time))
        print('train loss: {:.5f}, accuracy: {:.3f}'.format(
            train_loss, train_acc))
        print('test  loss: {:.5f}, accuracy: {:.3f}'.format(
            test_loss, test_acc))

        history.append(
            [epoch, train_acc, train_loss, test_acc, test_loss,
コード例 #5
0
            # 读取数据块
            chunk_data, chunk_type_code = png_read_chunk(fp)

            if chunk_type_code not in chunk_type.keys():
                chunk_type[chunk_type_code] = 1
            else:
                chunk_type[chunk_type_code] += 1

        print(image_info)
        print(chunk_type)



if __name__ == "__main__":

    tic = tc()

    block_size = (512, 512)

    # ------------- train data ----------------
    # train image_1.png
    png_file = '../data/jingwei_round1_train_20190619/image_1.png'
    # check_png(png_file)
    png_sub(png_file, '../data/sub/train_1', block_size)
    print('train image_1.png', tc() - tic)

    # train image_2.png
    png_file = '../data/jingwei_round1_train_20190619/image_2.png'
    # check_png(png_file)
    png_sub(png_file, '../data/sub/train_2', block_size)
    print('train image_2.png', tc() - tic)
コード例 #6
0
ファイル: test_delect.py プロジェクト: nainiuzz/Q12306AI

ocr_model_meta = './model_data/ocr.ckpt-1108000.meta'
ocr_model_para = './model_data/ocr.ckpt-1108000'

cap_model_meta = './model_data/densenet_121.ckpt-145000.meta'
cap_model_para = './model_data/densenet_121.ckpt-145000'

classes_path = './model_data/12306_classes.txt'
classes = read_classes(classes_path)

model = CaptchaModel(ocr_model_meta=ocr_model_meta,
                     ocr_model_para=ocr_model_para,
                     cap_model_meta=cap_model_meta,
                     cap_model_para=cap_model_para)

from time import time as tc
tic = tc()

print("load model done")
for x in range(2, 19):
    word_ind, objs_ind = model.predict(
        '/Users/dtstack/PycharmProjects/Crack12306WithAI/misc/captcha/e_{}.jpg'
        .format(str(x)))
    word = classes[word_ind]
    objs = classes[objs_ind]
    print("e_{}.jpg".format(str(x)), unicode(word[0], "utf-8"), objs[0])
print('time elapsed:{:.2f}'.format(tc() - tic))

model.close()
コード例 #7
0
print("Is there a prime between 1328 and 1361:",
      any(is_prime(x) for x in range(1328, 1361)))

monday = [11, 12, 13, 14, 15, 16, 17, 17, 17, 16, 16, 15, 14, 13, 12, 11, 11]
tuesday = [x * 2 - 10 for x in monday]
print(monday, tuesday)
for item in zip(monday, tuesday):
    print(item, type(item))

for d1, d2 in zip(monday, tuesday):
    print(f"Hourly average is {(d1 + d2)/2}°C")

wednesday = [x * 2 - 20 for x in tuesday]

for temps in zip(monday, tuesday, wednesday):
    print(
        f"min={min(temps):4.1f}\t max={max(temps):4.1f}\t avg={sum(temps)/len(temps):4.1f}"
    )

from itertools import chain

temperatures = chain(monday, tuesday, wednesday)
print(monday, tuesday, wednesday)  # concatenation
print(list(temperatures))  # lazy concatenation

from md_lucas import lucas
from time import perf_counter as tc

start = tc()
for x in (p for p in lucas() if is_prime(p)):
    print(x, "time:", tc() - start)
コード例 #8
0
    sess.run(init)

    if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
        print('loading model {}'.format(ckpt.model_checkpoint_path))
        saver.restore(sess, ckpt.model_checkpoint_path)
        global_step = int(ckpt.model_checkpoint_path.split('-')[-1]) + 1
    else:
        global_step = 0

    if is_training:
        merged = tf.summary.merge_all()
        summary_writer_train = tf.summary.FileWriter(log_dir + '/train',
                                                     sess.graph)
        summary_writer_valid = tf.summary.FileWriter(log_dir + '/valid')

        tic = tc()
        epoch_learning_rate = init_learning_rate

        for epoch in range(total_epochs):
            local_step = 0
            train_idxs = np.random.permutation(499)
            for i in range(499):
                print('flame: {}/{} '.format(i + 1, 499))
                data, _ = npy_item_read(train_path, train_idxs[i])
                flame_idxs = np.unique(data[:, 0])
                np.random.shuffle(flame_idxs)
                for flame in flame_idxs:

                    # 处理每一帧数据
                    lg = data[:, 0] == flame
                    pts, intensity, category = data[lg, 1:4], data[lg,