def make_pickled_time_series(root,case,x,y,save_folder,overwrite=False): import time_data_functions as tdf from os.path import join,isfile if not overwrite and not isfile( join(save_folder,"{0}_px{1}_py{2}.p".format( case.replace('.hdf5',''), x, y ))): df = tdf.read_hdf5_time_series( join(root,case), case.replace('.hdf5',''), loc=(-y,x) ) else: return 0 if df is not None: df['x'] = x df['y'] = y df.to_pickle(join(save_folder,"{0}_px{1}_py{2}.p".format( case.replace('.hdf5',''), x, y ))) return 0
def load_time_series(device="Sr20R21",alpha='0',phi='0',z='10', p=(-0.1,0.1)): from time_data_functions import read_hdf5_time_series import os #case = "{0}_a{1}_p{2}_U20_z{3}_tr_planar".format( # device, # alpha, # phi, # z #) case = "{0}_a{1}_p{2}_U20_z{3}_tr_NewProcessing".format( device, alpha, phi, z ) hdf5_file = os.path.join( root, 'TimeData_NewProcessing.hdf5' #'planar.hdf5' ) return read_hdf5_time_series( hdf5_file, case, loc = p ).interpolate()
def make_hdf5_time_series(root, case, x, y, save_folder): import time_data_functions as tdf from os.path import join df = tdf.read_hdf5_time_series(join(root, case), case.replace(".hdf5", ""), loc=(-y, x)) if df is not None: df["x"] = x df["y"] = y df.to_pickle(join(save_folder, "{0}_px{1}_py{2}.p".format(case.replace(".hdf5", ""), x, y)))