コード例 #1
0
    def definition(self, model, X, scale_factor):
        on = X[self.on].cat.categories
        self.shape_ = len(on)
        group, n_groups, self.groups_ = get_group_definition(
            X, self.pool_cols, self.pool_type
        )

        with model:
            if self.pool_type == "partial":
                sigma_k = pm.HalfCauchy(self._param_name("sigma_k"), beta=self.scale)
                offset_k = pm.Normal(
                    self._param_name("offset_k"),
                    mu=0,
                    sd=1,
                    shape=(n_groups, self.shape_),
                )
                k = pm.Deterministic(self._param_name("k"), offset_k * sigma_k)

            else:
                k = pm.Normal(
                    self._param_name("k"),
                    mu=0,
                    sigma=self.scale,
                    shape=(n_groups, self.shape_),
                )

        return k[group, X[self.on].cat.codes]
コード例 #2
0
    def definition(self, model, X, scale_factor):
        t = X["t"].values
        group, n_groups, self.groups_ = get_group_definition(
            X, self.pool_cols, self.pool_type)
        self.p_ = self.period / scale_factor['t']
        n_params = self.n * 2

        with model:
            if self.pool_type == 'partial':

                mu_beta = pm.Normal(self._param_name("mu_beta"),
                                    mu=0,
                                    sigma=1,
                                    shape=n_params)  # TODO: add as parameters
                sigma_beta = pm.HalfNormal(self._param_name("sigma_beta"),
                                           0.1,
                                           shape=n_params)
                offset_beta = pm.Normal(self._param_name("offset_beta"),
                                        0,
                                        1 / self.shrinkage_strength,
                                        shape=(n_groups, n_params))

                beta = pm.Deterministic(self._param_name("beta"),
                                        mu_beta + offset_beta * sigma_beta)
            else:
                beta = pm.Normal(self._param_name("beta"),
                                 0,
                                 1,
                                 shape=(n_groups, n_params))

            seasonality = pm.math.sum(self._X_t(t, self.p_, self.n) *
                                      beta[group],
                                      axis=1)

        return seasonality
コード例 #3
0
ファイル: constant.py プロジェクト: zwbjtu123/timeseers
    def definition(self, model, X, scale_factor):
        group, n_groups, self.groups_ = get_group_definition(X, self.pool_cols, self.pool_type)

        with model:
            if self.pool_type == "partial":

                mu_c = pm.Uniform(self._param_name('mu_c'), lower=self.lower, upper=self.upper)
                offset_c = pm.Normal(self._param_name('offset_c'), mu=0, sigma=1)
                c = pm.Deterministic(self._param_name('c'), mu_c + offset_c)
            else:
                c = pm.Uniform(self._param_name('c'), lower=self.lower, upper=self.upper, shape=n_groups)

        return c[group]
コード例 #4
0
ファイル: linear_trend.py プロジェクト: jattenberg/timeseers
    def definition(self, model, X, scale_factor):
        t = X["t"].values
        group, n_groups, self.groups_ = get_group_definition(
            X, self.pool_cols, self.pool_type)
        self.s = np.linspace(0, np.max(t), self.n_changepoints + 2)[1:-1]

        with model:
            A = (t[:, None] > self.s) * 1.0

            if self.pool_type == "partial":
                sigma_k = pm.HalfCauchy(self._param_name("sigma_k"),
                                        beta=self.growth_prior_scale)
                offset_k = pm.Normal(self._param_name("offset_k"),
                                     mu=0,
                                     sd=1,
                                     shape=n_groups)
                k = pm.Deterministic(self._param_name("k"), offset_k * sigma_k)

                sigma_delta = pm.HalfCauchy(self._param_name("sigma_delta"),
                                            beta=self.changepoints_prior_scale)
                offset_delta = pm.Laplace(
                    self._param_name("offset_delta"),
                    0,
                    1,
                    shape=(n_groups, self.n_changepoints),
                )
                delta = pm.Deterministic(self._param_name("delta"),
                                         offset_delta * sigma_delta)

            else:
                delta = pm.Laplace(
                    self._param_name("delta"),
                    0,
                    self.changepoints_prior_scale,
                    shape=(n_groups, self.n_changepoints),
                )
                k = pm.Normal(self._param_name("k"),
                              0,
                              self.growth_prior_scale,
                              shape=n_groups)

            m = pm.Normal(self._param_name("m"), 0, 5, shape=n_groups)

            gamma = -self.s * delta[group, :]

            g = (k[group] + pm.math.sum(A * delta[group], axis=1)) * t + (
                m[group] + pm.math.sum(A * gamma, axis=1))
        return g
コード例 #5
0
ファイル: indicator.py プロジェクト: kylejcaron/timeseers
    def definition(self, model, X, scale_factor):
        group, n_groups, self.groups_ = get_group_definition(
            X, self.pool_cols, self.pool_type)

        with model:
            if self.pool_type == "partial":
                raise ValueError(
                    "Indicator() component doesn't support partial pooling")

            _ind = pm.Beta(self._param_name('_ind'),
                           alpha=0.5,
                           beta=0.5,
                           shape=n_groups)
            ind = pm.Deterministic(self._param_name('ind'), _ind * 2 - 1)

        return ind[group]
コード例 #6
0
    def definition(self, model, X, scale_factor):

        def update_gamma(j, gamma, i, delta, offset, rate, change_point):
            return T.set_subtensor(
                gamma[i, j],
                (change_point[j] - offset[i] - T.sum(gamma[i, :j])) *
                (1 - (rate[i] + T.sum(delta[i, :j])) / (rate[i] + T.sum(delta[i, :j+1])))
                )

        def get_gamma(i, gamma_init, delta, m, k, s):
            gamma, _ = theano.scan(
              update_gamma,
              sequences=[
                  T.arange(gamma_init.shape[1]),
              ],
              outputs_info=gamma_init,
              non_sequences=[i, delta, m, k, s],
            )
            return gamma[-1]

        t = X["t"].values
        self.cap_scaled = self._y_scaler_.transform(self.cap)
        group, n_groups, self.groups_ = get_group_definition(X, self.pool_cols, self.pool_type)
        self.s = np.linspace(0, np.max(t), self.n_changepoints + 2)[1:-1]

        with model:
            A = (t[:, None] > self.s) * 1.0

            if self.pool_type == 'partial':
                sigma_k = pm.HalfCauchy(self._param_name('sigma_k'), beta=self.growth_prior_scale)
                offset_k = pm.Normal(self._param_name('offset_k'), mu=0, sd=1, shape=n_groups)
                k = pm.Deterministic(self._param_name("k"), offset_k * sigma_k)

                sigma_delta = pm.HalfCauchy(
                    self._param_name('sigma_delta'), beta=self.changepoints_prior_scale
                )
                offset_delta = pm.Laplace(
                    self._param_name('offset_delta'), 0, 1, shape=(n_groups, self.n_changepoints)
                )
                delta = pm.Deterministic(self._param_name("delta"), offset_delta * sigma_delta)

            else:
                delta = pm.Laplace(self._param_name("delta"), 0, self.changepoints_prior_scale,
                                   shape=(n_groups, self.n_changepoints))
                k = pm.Normal(self._param_name("k"), 0, self.growth_prior_scale,
                              shape=n_groups, testval=np.ones(n_groups))

            m = pm.Normal(self._param_name("m"), 0, 5, shape=n_groups)

            gamma_init = T.zeros_like(delta)
            gamma, _ = theano.scan(
                get_gamma,
                sequences=[T.arange(gamma_init.shape[0])],
                outputs_info=gamma_init,
                non_sequences=[delta, m, k, self.s],
            )
            gamma = gamma[-1]
            growth = (
                (k[group] + pm.math.sum(A * delta[group], axis=1)) *
                (t - (m[group] + pm.math.sum(A * gamma[group], axis=1)))
            )
            growth = self.cap_scaled / (1 + pm.math.exp(-growth))
        return growth