コード例 #1
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
    def test_num_examples(self, n_points, seq_length, fc_max,
                          n_sequences_expected):
        df = mock_fit_data(periods=n_points, ids=[0])
        generator = SequenceForecastBatchGenerator(
            df=df,
            sequence_length=seq_length,
            forecast_steps_min=1,
            forecast_steps_max=fc_max,
        )
        assert generator.num_examples == n_sequences_expected

        generator.batch_offset = True
        assert generator.num_examples == max(0, n_sequences_expected - 1)
コード例 #2
0
ファイル: test_sequence.py プロジェクト: yivash/timeserio
 def test_single_batch(self, use_tensor_extension):
     df = mock_fit_data(
         periods=9, ids=[0], use_tensor_extension=use_tensor_extension
     )
     seq_length = 2
     generator = SequenceForecastBatchGenerator(
         df=df,
         batch_size=4,
         sequence_length=seq_length,
         id_column='id',
         sequence_columns=[ini.Columns.datetime, ini.Columns.target],
         sequence_prefix='seq_',
         last_step_columns=[],
         forecast_steps_min=1,
         forecast_steps_max=1,
     )
     assert len(generator) == 1
     batch = generator[0]
     assert isinstance(batch, pd.DataFrame)
     expected_columns = [
         'id', ini.Columns.datetime, ini.Columns.target,
         f'seq_{ini.Columns.datetime}', f'seq_{ini.Columns.target}'
     ]
     for col in expected_columns:
         assert col in batch
     sequence_columns = [
         f'seq_{ini.Columns.datetime}', f'seq_{ini.Columns.target}'
     ]
     for sequence_column in sequence_columns:
         sequenced = batch[sequence_column]
         assert sequenced.values.shape[1] == seq_length
コード例 #3
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_single_batch_with_last_step(self):
     df = mock_fit_data(periods=9, ids=[0])
     seq_length = 2
     generator = SequenceForecastBatchGenerator(
         df=df,
         batch_size=4,
         sequence_length=seq_length,
         id_column='id',
         sequence_columns=[ini.Columns.datetime, ini.Columns.target],
         sequence_prefix='seq_',
         last_step_columns=[ini.Columns.datetime],
         last_step_prefix='last_step_',
         forecast_steps_min=1,
         forecast_steps_max=1,
     )
     assert len(generator) == 1
     batch = generator[0]
     assert isinstance(batch, pd.DataFrame)
     expected_columns = [
         'id', ini.Columns.datetime, ini.Columns.target,
         f'seq_{ini.Columns.datetime}', f'seq_{ini.Columns.target}',
         f'last_step_{ini.Columns.datetime}'
     ]
     for col in expected_columns:
         assert col in batch
     sequence_columns = [
         f'seq_{ini.Columns.datetime}', f'seq_{ini.Columns.target}'
     ]
     for sequence_column in sequence_columns:
         values = batch[sequence_column].values
         assert values.shape[1] == seq_length
     last_step_columns = [f'last_step_{ini.Columns.datetime}']
     for column in last_step_columns:
         values = batch[column].values
         assert len(values.shape) == 1
コード例 #4
0
ファイル: test_sequence.py プロジェクト: yivash/timeserio
 def test_incompatible_period(self, seq_len, period):
     with pytest.raises(ValueError):
         SequenceForecastBatchGenerator(
             df=None,
             sequence_length=seq_len,
             batch_offset=True,
             batch_offset_period=period
         )
コード例 #5
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_random_offset(self, random):
     df = mock_fit_data(periods=101, ids=[0])
     generator = SequenceForecastBatchGenerator(
         df=df,
         batch_offset=True,
         sequence_length=10,
     )
     with pytest.raises(AssertionError):
         assert_array_equal(generator[0], generator[0])
コード例 #6
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_n_batches(self, n_points, seq_length, fc_max, batch_size,
                    n_batches_expected):
     df = mock_fit_data(periods=n_points, ids=[0])
     generator = SequenceForecastBatchGenerator(
         df=df,
         batch_size=batch_size,
         sequence_length=seq_length,
         forecast_steps_min=1,
         forecast_steps_max=fc_max,
     )
     assert len(generator) == n_batches_expected
コード例 #7
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_random_offset_value_with_period(self, random, seq_len, period,
                                          expected_max_offset):
     df = mock_fit_data(periods=101, ids=[0])
     generator = SequenceForecastBatchGenerator(df=df,
                                                sequence_length=seq_len,
                                                batch_offset=True,
                                                batch_offset_period=period)
     offsets = [generator.random_offset_value for _ in range(100)]
     assert min(offsets) == 0
     assert max(offsets) == expected_max_offset
     assert all(offset % period == 0 for offset in offsets)
コード例 #8
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_invalid_start_time(self):
     df = mock_fit_data(periods=1344, ids=[0])
     df = df.sort_values(by=[ini.Columns.datetime])
     start_time = (df[ini.Columns.datetime][0] +
                   pd.Timedelta(1, unit='m')).time()
     generator = SequenceForecastBatchGenerator(
         df=df,
         sequence_length=48,
         sequence_columns=[ini.Columns.datetime],
         start_time=start_time)
     with pytest.raises(ValueError):
         generator[0]
コード例 #9
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_batch_size(self, n_points, seq_length, fc_max, batch_size,
                     expected_last_batch_size):
     df = mock_fit_data(periods=n_points, ids=[0])
     generator = SequenceForecastBatchGenerator(
         df=df,
         batch_size=batch_size,
         sequence_columns=[ini.Columns.target],
         last_step_columns=[],
         sequence_length=seq_length,
         forecast_steps_min=1,
         forecast_steps_max=fc_max,
     )
     for batch_idx in range(len(generator) - 1):
         assert len(generator[batch_idx]) == batch_size
     assert len(generator[-1]) == expected_last_batch_size
コード例 #10
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_start_time(self, start_time_idx, expected_start_time_idx):
     df = mock_fit_data(periods=1344, ids=[0])
     df = df.sort_values(by=[ini.Columns.datetime])
     if start_time_idx is None:
         start_time = None
     else:
         start_time = df[ini.Columns.datetime][start_time_idx].time()
     expected_start_time = df[
         ini.Columns.datetime][expected_start_time_idx].time()
     generator = SequenceForecastBatchGenerator(
         df=df,
         sequence_length=48,
         sequence_columns=[ini.Columns.datetime],
         batch_offset=False,
         start_time=start_time)
     batch = generator[0]
     actual_start_time = batch[f'seq_{ini.Columns.datetime}'][0][0].time()
     assert actual_start_time == expected_start_time
コード例 #11
0
ファイル: test_sequence.py プロジェクト: yivash/timeserio
 def test_n_batches_with_offset(
     self, n_points, seq_length, fc_max, batch_size, n_batches_expected,
     use_tensor_extension
 ):
     df = mock_fit_data(
         periods=n_points,
         ids=[0],
         use_tensor_extension=use_tensor_extension
     )
     generator = SequenceForecastBatchGenerator(
         df=df,
         batch_size=batch_size,
         sequence_length=seq_length,
         forecast_steps_min=1,
         forecast_steps_max=fc_max,
         batch_offset=True,
     )
     assert len(generator) == n_batches_expected
コード例 #12
0
ファイル: test_sequence.py プロジェクト: valeman/timeserio
 def test_columns(self, id_column, sequence_columns, last_step_columns,
                  expected_columns):
     df = mock_raw_data(periods=10, ids=[0])
     generator = SequenceForecastBatchGenerator(
         df=df,
         batch_size=2,
         sequence_length=2,
         forecast_steps_min=1,
         forecast_steps_max=1,
         id_column=id_column,
         sequence_columns=sequence_columns,
         sequence_prefix='seq_',
         last_step_columns=last_step_columns,
         last_step_prefix='end_of_')
     batch = generator[0]
     batch_columns = {
         col[0] if isinstance(col, tuple) else col
         for col in batch.columns
     }
     assert batch_columns == set(expected_columns)