コード例 #1
0
ファイル: rref.py プロジェクト: matthuszagh/prjxray
    def load(fn_ins, simplify=False, corner=None, rm_zero=False):
        zero_names = OrderedSet()

        Ads, b = loadc_Ads_b(fn_ins, corner=corner, ico=True)
        if rm_zero:
            zero_names = rm_zero_cols(Ads)
        if simplify:
            print('Simplifying corner %s' % (corner, ))
            Ads, b = simplify_rows(Ads, b, remove_zd=False, corner=corner)
        return State(Ads, zero_names=zero_names)
コード例 #2
0
def run(fout, fns_in, corner, verbose=0):
    Ads, b = loadc_Ads_b(fns_in, corner, ico=True)
    Ads, b = simplify_rows(Ads, b, corner=corner)

    fout.write('ico,fast_max fast_min slow_max slow_min,rows...\n')
    for row_b, row_ds in zip(b, Ads):
        # write in same format, but just stick to this corner
        out_b = [str(row_b) for _i in range(4)]
        ico = '1'
        items = [ico, ' '.join(out_b)]

        for k, v in sorted(row_ds.items()):
            items.append('%u %s' % (v, k))
        fout.write(','.join(items) + '\n')
コード例 #3
0
def run(fns_in, sub_json=None, verbose=False):
    assert len(fns_in) > 0
    # arbitrary corner...data is thrown away
    Ads, b = loadc_Ads_b(fns_in, "slow_max")

    if sub_json:
        print('Subbing JSON %u rows' % len(Ads))
        #pds(Ads, 'Orig')
        names_old = index_names(Ads)
        run_sub_json(Ads, sub_json, verbose=verbose)
        names_new = index_names(Ads)
        print("Sub: %u => %u names" % (len(names_old), len(names_new)))
        print(names_new)
        print('Subbed JSON %u rows' % len(Ads))
        names = names_new
        #pds(Ads, 'Sub')
    else:
        names = index_names(Ads)

    # Squash into a matrix
    # A_ub2, b_ub2 = Adi2matrix_random(A_ubd, b, names)
    Amat, _bmat = Ads2matrix_linear(Ads, b)
    #pmatrix(Amat, 'Matrix')
    '''
    The matrix must be fully ranked to even be considered reasonable
    Even then, floating point error *possibly* could make it fully ranked, although probably not since we have whole numbers
    Hence the slogdet check
    '''
    print
    # https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.linalg.matrix_rank.html
    rank = np.linalg.matrix_rank(Amat)
    print('rank: %s / %d col' % (rank, len(names)))
    # doesn't work on non-square matrices
    if 0:
        # https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.linalg.slogdet.html
        sign, logdet = np.linalg.slogdet(Amat)
        # If the determinant is zero, then sign will be 0 and logdet will be -Inf
        if sign == 0 and logdet == float('-inf'):
            print('slogdet :( : 0')
        else:
            print('slogdet :) : %s, %s' % (sign, logdet))
    if rank != len(names):
        raise Exception("Matrix not fully ranked w/ %u / %u" %
                        (rank, len(names)))
コード例 #4
0
def run(fns_in, corner, bounds_csv, verbose=False):
    print('Loading data')
    Ads, borig = loadc_Ads_b(fns_in, corner, ico=True)

    bounds = load_bounds(bounds_csv, corner)
    # verify is flattened
    for k in bounds.keys():
        assert 'GROUP_' not in k, 'Must operate on flattened bounds'

    # compute our timing model delay at the given corner
    bgots = []
    for row_ds in Ads:
        delays = [n * bounds[x] for x, n in row_ds.items()]
        bgots.append(sum(delays))

    ses = (np.asarray(bgots) - np.asarray(borig))**2
    mse = (ses).mean(axis=None)
    print('MSE aggregate: %0.1f' % mse)
    print('Min SE: %0.1f' % min(ses))
    print('Max SE: %0.1f' % max(ses))
コード例 #5
0
 def load(fn_ins, simplify=False, corner=None):
     Ads, b = loadc_Ads_b(fn_ins, corner=corner, ico=True)
     if simplify:
         print('Simplifying corner %s' % (corner, ))
         Ads, b = simplify_rows(Ads, b, remove_zd=False, corner=corner)
     return State(Ads)
コード例 #6
0
ファイル: timfuz_solve.py プロジェクト: matthuszagh/prjxray
def run(fns_in,
        corner,
        run_corner,
        sub_json=None,
        bounds_csv=None,
        dedup=True,
        massage=False,
        outfn=None,
        verbose=False,
        **kwargs):
    print('Loading data')
    Ads, b = loadc_Ads_b(fns_in, corner, ico=True)

    # Remove duplicate rows
    # is this necessary?
    # maybe better to just add them into the matrix directly
    if dedup:
        oldn = len(Ads)
        iold = instances(Ads)
        Ads, b = simplify_rows(Ads, b, corner=corner)
        print('Simplify %u => %u rows' % (oldn, len(Ads)))
        print('Simplify %u => %u instances' % (iold, instances(Ads)))

    if sub_json:
        print('Sub: %u rows' % len(Ads))
        iold = instances(Ads)
        names_old = index_names(Ads)
        run_sub_json(Ads, sub_json, verbose=verbose)
        names = index_names(Ads)
        print("Sub: %u => %u names" % (len(names_old), len(names)))
        print('Sub: %u => %u instances' % (iold, instances(Ads)))
    else:
        names = index_names(Ads)
    '''
    Substitution .csv
    Special .csv containing one variable per line
    Used primarily for multiple optimization passes, such as different algorithms or additional constraints
    '''
    if bounds_csv:
        Ads2, b2 = loadc_Ads_b([bounds_csv], corner, ico=True)
        bounds = Ads2bounds(Ads2, b2)
        assert len(bounds), 'Failed to load bounds'
        rows_old = len(Ads)
        Ads, b = filter_bounds(Ads, b, bounds, corner)
        print('Filter bounds: %s => %s + %s rows' %
              (rows_old, len(Ads), len(Ads2)))
        Ads = Ads + Ads2
        b = b + b2
        assert len(Ads) or allow_zero_eqns()
        assert len(Ads) == len(b), 'Ads, b length mismatch'

    if verbose:
        print
        print_eqns(Ads, b, verbose=verbose)

        #print
        #col_dist(A_ubd, 'final', names)
    if massage:
        try:
            Ads, b = massage_equations(Ads, b, corner=corner)
        except SimplifiedToZero:
            if not allow_zero_eqns():
                raise
            print('WARNING: simplified to zero equations')
            Ads = []
            b = []

    print('Converting to numpy...')
    names, Anp = A_ds2np(Ads)
    run_corner(Anp,
               np.asarray(b),
               names,
               corner,
               outfn=outfn,
               verbose=verbose,
               **kwargs)