コード例 #1
0
    def normalizer(self, proto):
        list_normalizers = [
            normalizers.Replace("``", '"'),
            normalizers.Replace("''", '"')
        ]
        if not self.original_tokenizer.keep_accents:
            list_normalizers.append(normalizers.NFKD())
            list_normalizers.append(normalizers.StripAccents())
        if self.original_tokenizer.do_lower_case:
            list_normalizers.append(normalizers.Lowercase())

        precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
        list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
        return normalizers.Sequence(list_normalizers)
コード例 #2
0
    def __init__(
        self,
        replacement: str = "▁",
        add_prefix_space: bool = True,
        unk_token: Union[str, AddedToken] = "<unk>",
        eos_token: Union[str, AddedToken] = "</s>",
        pad_token: Union[str, AddedToken] = "<pad>",
    ):
        self.special_tokens = {
            "pad": {"id": 0, "token": pad_token},
            "eos": {"id": 1, "token": eos_token},
            "unk": {"id": 2, "token": unk_token},
        }

        self.special_tokens_list = [None] * len(self.special_tokens)
        for token_dict in self.special_tokens.values():
            self.special_tokens_list[token_dict["id"]] = token_dict["token"]

        tokenizer = Tokenizer(Unigram())

        tokenizer.normalizer = normalizers.Sequence(
            [
                normalizers.Nmt(),
                normalizers.NFKC(),
                normalizers.Replace(Regex(" {2,}"), " "),
                normalizers.Lowercase(),
            ]
        )
        tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
            [
                pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
                pre_tokenizers.Digits(individual_digits=True),
                pre_tokenizers.Punctuation(),
            ]
        )
        tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)

        tokenizer.post_processor = TemplateProcessing(
            single=f"$A {self.special_tokens['eos']['token']}",
            special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])],
        )

        parameters = {
            "model": "SentencePieceUnigram",
            "replacement": replacement,
            "add_prefix_space": add_prefix_space,
        }

        super().__init__(tokenizer, parameters)
コード例 #3
0
    def from_spm(filename: str):
        try:
            import sys

            sys.path.append(".")

            import sentencepiece_model_pb2 as model
        except Exception:
            raise Exception(
                "You don't seem to have the required protobuf file, in order to use this function you need to run `pip install protobuf` and `wget https://raw.githubusercontent.com/google/sentencepiece/master/python/src/sentencepiece/sentencepiece_model_pb2.py` for us to be able to read the intrinsics of your spm_file. `pip install sentencepiece` is not required."
            )

        m = model.ModelProto()
        m.ParseFromString(open(filename, "rb").read())

        precompiled_charsmap = m.normalizer_spec.precompiled_charsmap
        vocab = [(piece.piece, piece.score) for piece in m.pieces]
        unk_id = m.trainer_spec.unk_id
        model_type = m.trainer_spec.model_type
        if model_type != 1:
            raise Exception(
                "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
            )

        replacement = "▁"
        add_prefix_space = True

        tokenizer = Tokenizer(Unigram(vocab, unk_id))

        tokenizer.normalizer = normalizers.Sequence(
            [
                normalizers.Precompiled(precompiled_charsmap),
                normalizers.Replace(Regex(" {2,}"), " "),
            ]
        )
        tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(
            replacement=replacement, add_prefix_space=add_prefix_space
        )
        tokenizer.decoder = decoders.Metaspace(
            replacement=replacement, add_prefix_space=add_prefix_space
        )

        parameters = {
            "model": "SentencePieceUnigram",
        }

        obj = BaseTokenizer.__new__(SentencePieceUnigramTokenizer, tokenizer, parameters)
        BaseTokenizer.__init__(obj, tokenizer, parameters)
        return obj
コード例 #4
0
 def _prepare_pipeline(self):
     self.tokenizer.normalizer = normalizers.Sequence(
         [NFD(), Lowercase(), StripAccents()])
     self.tokenizer.pre_tokenizer = Whitespace()
     self.tokenizer.post_processor = TemplateProcessing(
         single="[CLS] $A [SEP]",
         pair="[CLS] $A [SEP] $B:1 [SEP]:1",
         special_tokens=[
             ("[CLS]", 1),
             ("[SEP]", 2),
         ],
     )
     self.tokenizer.enable_padding(
         pad_id=self.__class__.SPECIAL_TOKENS.index("[PAD]"),
         pad_token="[PAD]")
コード例 #5
0
def main(args):
    # from tokenizers import BertWordPieceTokenizer
    from tokenizers import Tokenizer
    from tokenizers.models import WordPiece

    bert_tokenizer = Tokenizer(WordPiece())
    # bert_tokenizer = Tokenizer(MBartTokenizer())

    from tokenizers import normalizers

    from tokenizers.normalizers import Lowercase, NFD, StripAccents

    bert_tokenizer.normalizer = normalizers.Sequence(
        [NFD(), Lowercase(), StripAccents()])

    from tokenizers.pre_tokenizers import Whitespace

    bert_tokenizer.pre_tokenizer = Whitespace()

    # from tokenizers.processors import TemplateProcessing
    #
    # bert_tokenizer.post_processor = TemplateProcessing(
    #     single="[CLS] $A [SEP]",
    #     pair="[CLS] $A [SEP] $B:1 [SEP]:1",
    #     special_tokens=[
    #         ("[CLS]", 1),
    #         ("[SEP]", 2),
    #     ],
    # )

    from tokenizers.trainers import WordPieceTrainer

    trainer = WordPieceTrainer(
        vocab_size=10000,
        special_tokens=["[UNK]", "[CLS]", "[PAD]",
                        "[MASK]"]  # "[SEP]", "[PAD]", "[MASK]"]
    )
    files = glob.glob(args.text_raw_files_pattern)
    bert_tokenizer.train(trainer, files)

    os.makedirs(args.output_dir, exist_ok=True)
    model_files = bert_tokenizer.model.save(args.output_dir,
                                            "bert-tokenizer-kr")
    bert_tokenizer.model = WordPiece.from_file(*model_files, unk_token="[UNK]")

    bert_tokenizer.save(os.path.join(args.output_dir,
                                     "bert-tokenizer-kr.json"))
コード例 #6
0
    def configure_tokenizers(self, padding, truncation, max_length, lower):
        # Settings
        pad_length = None
        if padding in {True, "longest"}:
            pass
        elif padding in {"max_length"}:
            pad_length = max_length
        elif padding in {False, "do_not_pad"}:
            pass
        else:
            raise ValueError("Unknown padding type")

        # SRC tokenizer
        tok_normalizers = [NFD(), Strip()]
        if lower:
            tok_normalizers += [Lowercase()]

        self.tokenizer = Tokenizer(tok_model())  # unk_token=... not working
        self.tokenizer.add_special_tokens(self.special_tokens)
        self.tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
            [WhitespaceSplit()])
        self.tokenizer.normalizer = normalizers.Sequence(
            tok_normalizers)  # StripAccents requires NFD
        self.tokenizer.decoder = tok_decoder()

        # Define template (Needed for the sos/eos tokens)
        basic_template = TemplateProcessing(
            single=f"{self.SOS_WORD} $A {self.EOS_WORD}",
            pair=
            f"{self.SOS_WORD} $A {self.EOS_WORD} {self.SOS_WORD} $B {self.EOS_WORD}",
            special_tokens=[
                (self.SOS_WORD, self.tokenizer.token_to_id(self.SOS_WORD)),
                (self.EOS_WORD, self.tokenizer.token_to_id(self.EOS_WORD))
            ],
        )
        self.tokenizer.post_processor = basic_template

        if padding:
            self.tokenizer.enable_padding(pad_id=self.tokenizer.token_to_id(
                self.PAD_WORD),
                                          pad_token=self.PAD_WORD,
                                          length=pad_length)
        if truncation:
            self.tokenizer.enable_truncation(max_length,
                                             stride=0,
                                             strategy='longest_first')
コード例 #7
0
ファイル: wiki_lstm.py プロジェクト: brainsqueeze/text2vec
def train_tokenizer() -> Tuple[tokenizers.Tokenizer, Generator, int]:
    tokenizer = tokenizers.Tokenizer(models.WordPiece(unk_token="<unk>"))
    tokenizer.decoder = decoders.WordPiece()

    tokenizer.normalizer = normalizers.Sequence([
        normalizers.NFD(),  # NFD unicode normalizer
        normalizers.Lowercase(),
        normalizers.StripAccents()
    ])
    tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.Sequence([
        pre_tokenizers.Whitespace(),
        pre_tokenizers.Digits(individual_digits=False)
    ])
    tokenizer.post_processor = processors.TemplateProcessing(
        single="$A </s>",
        pair="$A </s> [SEP] <s> $B:1",
        special_tokens=[("[SEP]", 1), ("<s>", 2), ("</s>", 3)])

    dataset = datasets.load_dataset("wikitext",
                                    "wikitext-103-raw-v1",
                                    split="test")

    def batch_iterator(batch_size=1000):
        for i in range(0, len(dataset), batch_size):
            yield dataset[i:i + batch_size]["text"]

    tokenizer.train_from_iterator(
        batch_iterator(),
        trainer=trainers.WordPieceTrainer(
            vocab_size=10000, special_tokens=["<unk>", "[SEP]", "<s>",
                                              "</s>"]))

    def generator():
        for record in dataset:
            if record['text'].strip() != '':
                for sentence in sent_tokenizer(record['text']):
                    yield sentence

    data = tf.data.Dataset.from_generator(generator,
                                          output_signature=(tf.TensorSpec(
                                              shape=(None), dtype=tf.string)))
    data = data.map(tf.strings.strip,
                    num_parallel_calls=tf.data.experimental.AUTOTUNE)
    return tokenizer, data
コード例 #8
0
    def converted(self) -> Tokenizer:
        vocab = self.original_tokenizer.encoder
        merges = list(self.original_tokenizer.bpe_ranks.keys())
        unk_token = self.original_tokenizer.unk_token

        tokenizer = Tokenizer(
            BPE(
                vocab=vocab,
                merges=merges,
                dropout=None,
                continuing_subword_prefix="",
                end_of_word_suffix="</w>",
                fuse_unk=False,
                unk_token=str(unk_token),
            ))

        tokenizer.normalizer = normalizers.Sequence([
            normalizers.NFC(),
            normalizers.Replace(Regex(r"\s+"), " "),
            normalizers.Lowercase()
        ])
        tokenizer.pre_tokenizer = pre_tokenizers.Sequence([
            pre_tokenizers.Split(
                Regex(
                    r"""'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+"""
                ),
                behavior="removed",
                invert=True,
            ),
            pre_tokenizers.ByteLevel(add_prefix_space=False),
        ])
        tokenizer.decoder = decoders.ByteLevel()

        # Hack to have a ByteLevel and TemplaceProcessor
        tokenizer.post_processor = processors.RobertaProcessing(
            sep=(self.original_tokenizer.eos_token,
                 self.original_tokenizer.eos_token_id),
            cls=(self.original_tokenizer.bos_token,
                 self.original_tokenizer.bos_token_id),
            add_prefix_space=False,
            trim_offsets=False,
        )
        return tokenizer
コード例 #9
0
ファイル: tokenization.py プロジェクト: lgessler/embur
def train_tokenizer(sentences: List[str], serialize_path: str = "", vocab_size: int = 8000) -> Tokenizer:
    bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
    bert_tokenizer.normalizer = normalizers.Sequence([NFD(), Lowercase(), StripAccents()])
    bert_tokenizer.pre_tokenizer = Whitespace()
    bert_tokenizer.post_processor = TemplateProcessing(
        single="[CLS] $A [SEP]",
        pair="[CLS] $A [SEP] $B:1 [SEP]:1",
        special_tokens=[
            ("[CLS]", 1),
            ("[SEP]", 2),
        ],
    )
    trainer = WordPieceTrainer(
        vocab_size=vocab_size,
        special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]
    )
    bert_tokenizer.train_from_iterator(sentences, trainer=trainer)
    if serialize_path:
        bert_tokenizer.save(serialize_path)
    return bert_tokenizer
コード例 #10
0
def train_wordpiece_bert():
    """
    Sample code from: https://huggingface.co/docs/tokenizers/python/latest/pipeline.html
    """
    from tokenizers.models import WordPiece
    bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))

    from tokenizers import normalizers
    from tokenizers.normalizers import Lowercase, NFD, StripAccents
    bert_tokenizer.normalizer = normalizers.Sequence(
        [NFD(), Lowercase(), StripAccents()])

    from tokenizers.pre_tokenizers import Whitespace
    bert_tokenizer.pre_tokenizer = Whitespace()

    from tokenizers.processors import TemplateProcessing
    bert_tokenizer.post_processor = TemplateProcessing(
        single="[CLS] $A [SEP]",
        pair="[CLS] $A [SEP] $B:1 [SEP]:1",
        special_tokens=[
            ("[CLS]", 1),
            ("[SEP]", 2),
        ],
    )

    bert_tokenizer.decoder = decoders.WordPiece()

    from tokenizers.trainers import WordPieceTrainer
    trainer = WordPieceTrainer(
        vocab_size=30522,
        special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
    files = [
        DIR_DATA + os.sep + 'wikitext-103' + os.sep + 'wiki.%s.raw' % a
        for a in ["test", "train", "valid"]
    ]
    bert_tokenizer.train(files, trainer)
    bert_tokenizer.save(DIR_TOKENIZERS + os.sep + 'bert_wiki.json')

    return bert_tokenizer
コード例 #11
0
def train_tokenizer() -> tokenizers.Tokenizer:
    tokenizer = tokenizers.Tokenizer(models.WordPiece(unk_token="<unk>"))
    tokenizer.decoder = decoders.WordPiece()

    tokenizer.normalizer = normalizers.Sequence([
        normalizers.NFD(),  # NFD unicode normalizer
        normalizers.Lowercase(),
        normalizers.StripAccents()
    ])
    tokenizer.pre_tokenizer = tokenizers.pre_tokenizers.Sequence([
        pre_tokenizers.Whitespace(),
        pre_tokenizers.Digits(individual_digits=False)
    ])
    tokenizer.post_processor = processors.TemplateProcessing(
        single="$A </s>",
        pair="$A </s> [SEP] <s> $B:1",
        special_tokens=[("[SEP]", 1), ("<s>", 2), ("</s>", 3)])

    # dataset = datasets.load_dataset("wikitext", "wikitext-103-raw-v1", split="train+test+validation")
    dataset = datasets.load_dataset("wikitext",
                                    "wikitext-103-raw-v1",
                                    split="validation")

    def batch_iterator(batch_size=1000):
        for i in range(0, len(dataset), batch_size):
            yield dataset[i:i + batch_size]["text"]

    tokenizer.train_from_iterator(
        batch_iterator(),
        trainer=trainers.WordPieceTrainer(
            vocab_size=10000, special_tokens=["<unk>", "[SEP]", "<s>",
                                              "</s>"]))

    def generator():
        for record in dataset:
            if record['text'].strip() != '':
                yield record['text']

    return tokenizer, generator
コード例 #12
0
    def __init__(
        self,
        vocab: Optional[Union[str, Dict[str, int]]] = None,
        unk_token: Union[str, AddedToken] = "[UNK]",
        sep_token: Union[str, AddedToken] = "[SEP]",
        cls_token: Union[str, AddedToken] = "[CLS]",
        pad_token: Union[str, AddedToken] = "[PAD]",
        mask_token: Union[str, AddedToken] = "[MASK]",
        num_unused_tokens: int = 10,
        mecab_dic_type: str = "unidic_lite",
        wordpieces_prefix: str = "##",
    ) -> None:
        super().__init__(
            vocab=vocab,
            unk_token=unk_token,
            sep_token=sep_token,
            cls_token=cls_token,
            pad_token=pad_token,
            mask_token=mask_token,
            wordpieces_prefix=wordpieces_prefix,
        )
        self._tokenizer.add_special_tokens(
            ['<unused{}>'.format(i) for i in range(num_unused_tokens)])

        self._tokenizer.normalizer = normalizers.Sequence(
            [normalizers.NFKC(), normalizers.Strip()])
        if mecab_dic_type in ("unidic_lite", "unidic", "ipadic"):
            self._tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(
                MeCabPreTokenizer(mecab_dic_type))
        elif mecab_dic_type == "whitespace":
            self._tokenizer.pre_tokenizer = pre_tokenizers.WhitespaceSplit()
        else:
            raise ValueError("Invalid pre_tokenizer_type is specified.")

        parameters = {
            "model": "BertWordPieceJapaneseTokenizer",
            "mecab_dic_type": mecab_dic_type,
        }
        self._parameters.update(parameters)
コード例 #13
0
 def normalizer(self, proto):
     precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
     return normalizers.Sequence([
         normalizers.Precompiled(precompiled_charsmap),
         normalizers.Replace(Regex(" {2,}"), " ")
     ])
コード例 #14
0
def train_custom_tokenizer(dataset,
                           token_model,
                           tknzr_file,
                           vocab_size,
                           vocab=None,
                           pretrain_fast=False,
                           max_input_chars_per_word=None,
                           eos_token=None,
                           bos_token=None,
                           pad_token=None,
                           mask_token=None,
                           unk_token=None):
    """
    Building a Tokenizer using HuggingFace library. The pipeline seems to be:

        - Model           : algorithm that tokenizes, it is a mandatory
                            component. There are only 4 models implemented
                            (BPE, Unigram, WordLevel, WordPiece)
        - Normalizer      : some preprocessing that could happen before, but
                            doesn't necessarily have to
        - Pre-Tokenizer   : splitting the input according to some rules
        - Post-Processing : needing to add some tokens/input after (mostly seems
                            to be eos, bos tokens)
        - Decoder         : certain previous pipeline steps need to be reversed
                            for proper decoding
        - Trainer         : The corresponding training algorithm for the model

    Note : Some pre-processing might need to happen beforehand in previous
            functions (might be easier using pandas before)

    Input
        token_model (str)        : algorithm to use for tokenization
        dataset (class)          : a python iterator that goes through the data
                                    to be used for training
        token_dir (str)          : directory with tokenizers
        vocab_size (int)         : size of the vocabulary to use
        tokenFilename (str)     : filename of particular token we want to
                                    train. Will overwrite previously save files.
        vocab (list of str)      : models other than BPE can use non-mandatory
                                    vocab as input
        max_input_chars_per_word : used for WordPiece

    Output
        tokenizer                : huggingFace Tokenizer object, our fully
                                    trainer tokenizer

    """
    special_token_lst = [
        pad_token, bos_token, eos_token, mask_token, unk_token
    ]

    # NFKC
    normalizer_lst = []
    pre_tokenizer_lst = [Whitespace, ByteLevel]
    decoder_lst = []

    bos_idx = special_token_lst.index(bos_token)
    eos_idx = special_token_lst.index(eos_token)

    if token_model == 'BPE':
        model = BPE(unk_token=unk_token)
        Trainer = BpeTrainer
    elif token_model == 'Unigram':
        model = Unigram(vocab=vocab)
        Trainer = UnigramTrainer
    elif token_model == 'WordLevel':
        model = WordLevel(unk_token=unk_token, vocab=vocab)
        Trainer = WordLevelTrainer
    elif token_model == 'WordPiece':
        model = WordPiece(unk_token=unk_token,
                          vocab=vocab,
                          max_input_chars_per_word=max_input_chars_per_word)
        Trainer = WordPieceTrainer
    else:
        error_msg = f'Error: token_model ({token_model}) not an algorithm in%s' \
                    % VALID_TOKENIZATIONS
        raise SystemExit(error_msg)

    # instantiation
    tokenizer = Tokenizer(model)

    # Select a tokenization trainer
    if vocab_size is None:
        trainer = Trainer(show_progress=True, special_tokens=special_token_lst)
    else:
        trainer = Trainer(vocab_size=vocab_size,
                          show_progress=True,
                          special_tokens=special_token_lst)

    # Set the normalizer
    tokenizer.normalizer = normalizers.Sequence(
        [fcn() for fcn in normalizer_lst])

    # Set the pre-tokenizer
    tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
        [fcn() for fcn in pre_tokenizer_lst])

    # Set the post-processing
    tokenizer.post_processor = processors.TemplateProcessing(
        single=bos_token + " $A " + eos_token,
        special_tokens=[(bos_token, bos_idx), (eos_token, eos_idx)],
        #  pair=bos_token+" $A "+eos_token" $B:1 "+eos_token+":1",
    )

    # Set the decoder
    if ByteLevel in pre_tokenizer_lst:
        tokenizer.decoder = decoders.ByteLevel()
    if Metaspace in pre_tokenizer_lst:
        tokenizer.decoder = decoders.Metaspace()
    if token_model == 'WordPiece':
        tokenizer.decoder = decoders.WordPiece()

    # creating iterator
    def batch_iterator():
        for i in np.arange(0, len(dataset)):
            yield dataset[i]

    # train call
    tokenizer.train_from_iterator(trainer=trainer,
                                  iterator=batch_iterator(),
                                  length=len(dataset))

    if Path(tknzr_file).exists():
        print(f"Warning : overwriting previously save tokenizer with\
                        same filename ( {tknzr_file} ).")
    tokenizer.save(tknzr_file)

    if pretrain_fast:
        tokenizer = PreTrainedTokenizerFast(tokenizer_file=tknzr_file)
    else:
        tokenizer = PreTrainedTokenizer(tokenizer_file=tknzr_file)
    tokenizer.pad_token = pad_token
    tokenizer.mask_token = mask_token

    return tokenizer
コード例 #15
0
import string, re
from tokenizers import normalizers
from tokenizers.normalizers import Lowercase, NFD, StripAccents, Strip, BertNormalizer

normalizer = normalizers.Sequence([BertNormalizer(), Strip()])


def delete_punct(w: str) -> str:
    """Delete all puctuation in a string."""
    return w.lower().translate(
        str.maketrans(string.punctuation,
                      len(string.punctuation) * " "))


def normalize(x):
    y = normalizer.normalize_str(delete_punct(x))
    y = y.replace("\n", " ")
    # remove double spaces
    y = re.sub(' +', ' ', y).strip()
    return y


def get_str(x):
    res = ''
    if isinstance(x, dict):
        for f in x:
            if f not in ['lang']:
                res += ' ' + get_str(x[f])
    if isinstance(x, str):
        res = x.strip()
    if isinstance(x, list):