print('Estimating the number of topics...') viz = Visualization(topic_model) viz.plot_greene_metric(min_num_topics=10, max_num_topics=11, tao=10, step=1, top_n_words=10) viz.plot_arun_metric(min_num_topics=5, max_num_topics=30, iterations=10) viz.plot_brunet_metric(min_num_topics=5, max_num_topics=30, iterations=10) # Infer topics print('Inferring topics...') topic_model.infer_topics(num_topics=15) # Save model on disk ut.save_topic_model(topic_model, 'output/NMF_15topics.pickle') # Print results print('\nTopics:') topic_model.print_topics(num_words=10) print('\nTopic distribution for document 0:', topic_model.topic_distribution_for_document(0)) print('\nMost likely topic for document 0:', topic_model.most_likely_topic_for_document(0)) print('\nFrequency of topics:', topic_model.topics_frequency()) print('\nTop 10 most relevant words for topic 2:', topic_model.top_words(2, 10))
# print('Estimating the number of topics...') # viz = Visualization(topic_model) # viz.plot_greene_metric(min_num_topics=10, # max_num_topics=11, # tao=10, step=1, # top_n_words=10) # viz.plot_arun_metric(min_num_topics=5, # max_num_topics=30, # iterations=10) # viz.plot_brunet_metric(min_num_topics=5, # max_num_topics=30, # iterations=10) # Infer topics print('Inferring topics...') topic_model.infer_topics(num_topics=15) # Save model on disk ut.save_topic_model(topic_model, 'NMF_EGC_15topics.pickle') # Load model from disk: topic_model = ut.load_topic_model('NMF_EGC_15topics.pickle') # Print results print('\nTopics:') topic_model.print_topics(num_words=10) print('\nTopic distribution for document 0:', topic_model.topic_distribution_for_document(0)) print('\nMost likely topic for document 0:', topic_model.most_likely_topic_for_document(0)) print('\nFrequency of topics:', topic_model.topics_frequency()) print('\nTop 10 most relevant words for topic 2:', topic_model.top_words(2, 10))
print('Estimating the number of topics...') viz = Visualization(topic_model) viz.plot_greene_metric(min_num_topics=10, max_num_topics=30, tao=10, step=1, top_n_words=10) viz.plot_arun_metric(min_num_topics=5, max_num_topics=30, iterations=10) viz.plot_brunet_metric(min_num_topics=5, max_num_topics=30, iterations=10) # Infer topics print('Inferring topics...') topic_model.infer_topics(num_topics=15) # Save model on disk ut.save_topic_model(topic_model, 'output/NMF_15topics.pickle') # Print results print('\nTopics:') topic_model.print_topics(num_words=10) print('\nTopic distribution for document 0:', topic_model.topic_distribution_for_document(0)) print('\nMost likely topic for document 0:', topic_model.most_likely_topic_for_document(0)) print('\nFrequency of topics:', topic_model.topics_frequency()) print('\nTop 10 most relevant words for topic 2:', topic_model.top_words(2, 10))