コード例 #1
0
def main(config_yaml):
    with open(config_yaml, 'r') as fp:
        config_str = jinja2.Template(fp.read()).render()
    config = yaml.load(config_str, Loader=yaml.Loader)

    # Get the classes associated with each
    for name in config['run']:
        try:
            config['cls'] = tc.Tomographer._find_subclass(name)
        except KeyError:
            raise ValueError(f"Tomographer {name} is not defined")

    # Decide if anyone needs the colors calculating and/or errors loading
    anyone_wants_colors = False
    anyone_wants_errors = False
    for run in config['run'].values():
        for version in run.values():
            if version.get('errors'):
                anyone_wants_errors = True
            if version.get('colors'):
                anyone_wants_colors = True


    bands = config['bands']

    training_data = tc.load_data(
        config['training_file'],
        bands,
        errors=anyone_wants_errors,
        colors=anyone_wants_colors
    )

    validation_data = tc.load_data(
        config['validation_file'],
        bands,
        errors=anyone_wants_errors,
        colors=anyone_wants_colors
    )

    training_z = tc.load_redshift(config['training_file'])
    validation_z = tc.load_redshift(config['validation_file'])

    if (('metrics_impl' not in config) or
        (config['metrics_impl'] == 'firecrown')):
         metrics_fn = tc.compute_scores
    elif config['metrics_impl'] == 'jax-cosmo':
        metrics_fn = tc.jc_compute_scores
    else:
        raise ValueError('Unknown metrics_impl value')

    with open(config['output_file'],'w') as output_file:
        for classifier_name, runs in config['run'].items():
            for run, settings in runs.items():
                scores = run_one(classifier_name, bands, settings,
                                 training_data, training_z, validation_data, validation_z,
                                 config['metrics'], metrics_fn)

                output_file.write (f"{classifier_name} {run} {settings} {scores} \n")
コード例 #2
0
def load_data(fname, bands):
    data = tc.load_magnitudes_and_colors(fname, bands)
    Nbands = len(bands)
    print('max mag before:', data[:, :Nbands].max(axis=0), 'nobj:',
          data.shape[0])
    z = tc.load_redshift(fname)
    data, z = tc.add_noise_snr_cut(data, z, bands)
    print('max mag after:', data[:, :Nbands].max(axis=0), 'nobj:',
          data.shape[0])

    return data, z