コード例 #1
0
    outputs2, variables2, _ = tft.volume_bndo_flbias_l6_40(
        inputs_reshape[2],
        dropout_rate=0.0,
        batch_normalization_statistic=False,
        bn_params=bn_params[2])
    if FUSION_MODE == 'vote':
        predictions = [
            outputs0['sm_out'], outputs1['sm_out'], outputs2['sm_out']
        ]
        combined_prediction = tft.vote_fusion(predictions)
        combined_prediction = tf.reshape(combined_prediction, [-1, 1])
    elif FUSION_MODE == 'committe':
        predictions = [
            outputs0['sm_out'], outputs1['sm_out'], outputs2['sm_out']
        ]
        combined_prediction = tft.committe_fusion(predictions)
    elif FUSION_MODE == 'late':
        features = [
            outputs0['flattened_out'], outputs1['flattened_out'],
            outputs2['flattened_out']
        ]
        _, combined_prediction, variables_fusion = tft.late_fusion(
            features, False)
    else:
        print("unknown fusion mode")
        exit()

    saver0 = tf.train.Saver(variables0)
    saver1 = tf.train.Saver(variables1)
    saver2 = tf.train.Saver(variables2)
    if FUSION_MODE == 'late':
コード例 #2
0
    volumes_reshape[2],
    False,
    dropout_rate=0.0,
    batch_normalization_statistic=False,
    bn_params=bn_params[2])
if FUSION_MODE == 'late':
    features = [
        net_outs0['flattened_out'], net_outs1['flattened_out'],
        net_outs2['fc1_out']
    ]
    _, softmax_out, variables_fusion = tft.late_fusion(features, True)
elif FUSION_MODE == 'committe':
    predictions = [
        net_outs0['sm_out'], net_outs1['sm_out'], net_outs2['sm_out']
    ]
    softmax_out = tft.committe_fusion(predictions)
correct_prediction = tf.equal(tf.argmax(softmax_out, 1),
                              tf.argmax(real_label, 1))
batch_accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

if not AUGMENTATION:
    correct_output = open(
        vision_path + "/correct_predictions_" + FUSION_MODE + "_subset9.log",
        "w")
    incorrect_output = open(
        vision_path + "/incorrect_predictions_" + FUSION_MODE + "_subset9.log",
        "w")

extract_volumes = [
    ft.partial(mt.extract_volumes,
               volume_shape=np.int_(