コード例 #1
0
ファイル: variance.py プロジェクト: p-enel/Sequence_learning
def variance_extract(file_paths):
    """
    calculating the variance of neurons that are selective to evidence
    
    """
    df_VarCE = pd.DataFrame(
        [], columns={'label', 'choice_left', 'choice_right', 'start_all'})
    df_signN = pd.DataFrame([], columns={'label', 'evid_pos', 'evid_neg'})

    for i, file in enumerate(file_paths):
        ## load files
        paod, trial_briefs = load(file)
        trial, choice, shape, _, _ = get_bhvinfo(paod, trial_briefs)

        resp_hidden = get_hidden_resp_all(paod, trial_briefs)

        ## group the response
        resp_group = resp_grouping(resp_hidden, choice.left, shape.rt)

        # variance
        var_ce = {}
        for key, value in resp_group.items():
            var_ce[key] = variance(np.dstack(value))

        df_VarCE.loc[i] = {
            'label': file,
            'choice_left': var_ce['choice_left'],
            'choice_right': var_ce['choice_right'],
            'start_all': var_ce['start_all']
        }

        results = regress_resp(resp_hidden, trial, choice, shape)

        # 128 neurons by 5 time point by 5 parameters (1 bias term + 4 factors)
        # index 1 represent evidence selectivity,
        params = np.array(results['params'])[:, :, 1]
        pvalue = np.array(results['p_values'])[:, :, 1]

        p_threshold = 0.05 / pvalue.size  # correction

        np.warnings.filterwarnings('ignore')
        signNeuron = np.all(pvalue < p_threshold, axis=1)
        posNeuron = np.all(params > -1e-10, axis=1)
        negNeuron = np.all(params < 1e-10, axis=1)

        df_signN.loc[i] = {
            'label': file,
            'evid_pos': np.logical_and(signNeuron, posNeuron),
            'evid_neg': np.logical_and(signNeuron, negNeuron)
        }

    return df_VarCE, df_signN
コード例 #2
0
def shape_prediction(path_files):

    df_pred = pd.DataFrame([],
                           columns={'label', 'dist_neuro', 'weight', 'kl_div'})

    for i, file in enumerate(path_files):
        ## load files
        paod, trial_briefs = load(file)
        trial, _, shape, _, _ = get_bhvinfo(paod, trial_briefs)
        numTrials = shape.rt.values
        #======================== shape prediction ========================
        dist_neuro, weight = [], []
        for i, rt in enumerate(numTrials):
            _, _, rd, _ = paod.get_neuron_behavior_pair(
                index=trial.num.iloc[i])
            for j in range(rt):
                #  the shapes in all the epoches are included
                weight.append(shape.tempweight.iloc[i][:j].sum())
                dist_neuro.append(rd[2 + j * 5, shapes_pos])

        # the sum weight before each shape onset
        weight = np.array(weight)
        # the response of neurons before the shape onset
        dist_neuro = np.asarray(dist_neuro)

        sega = np.linspace(weight.min(), weight.max(), num=11, endpoint=True)
        kl_div = []
        for n_group in range(len(sega) - 1):
            index = (weight >= sega[n_group]) & (weight < sega[n_group + 1])
            if n_group == len(sega) - 1 - 1:
                index = (weight >= sega[n_group]) & (weight <=
                                                     sega[n_group + 1])

            pred_dist = np.mean(dist_neuro[index], axis=0)
            pred_dist = pred_dist / np.sum(pred_dist)

            kl_div.append([
                stats.entropy(pred_dist, qk=prob_L),
                stats.entropy(pred_dist, qk=prob_R)
            ])

        df_pred.loc[i] = {
            'label': file,
            'weight': weight,
            'kl_div': np.array(kl_div),
            'dist_neuro': dist_neuro
        }
    return df_pred
コード例 #3
0
def psth_extract(path_file):

    psth_resp = []
    unitUrg = {'pos': [], 'neg': []}
    unitEvi = {'pos': [], 'neg': []}
    findPos = lambda x, y: np.where(np.all(x > y, axis=1))[0]
    findNeg = lambda x, y: np.where(np.all(x < y, axis=1))[0]

    for i, file in enumerate(path_file):
        # load behavioral data
        paod, trial_briefs = load(file)
        trial, choice, shapes, _, _ = get_bhvinfo(paod, trial_briefs)

        # load neural response
        resp_hidden = get_hidden_resp_all(paod, trial_briefs)

        for resp in resp_hidden:
            np.any(np.isnan(resp))

        # neuronal selectivity test
        results = regress_resp(resp_hidden, trial, choice, shapes)

        # find units that are selective to evidence/urgency
        # 128 neurons by 5 time point by 5 parameters (1 bias term + 4 factors)
        params = np.array(results['params'])
        p_value = np.array(results['p_values'])

        threshold = 0.05 / p_value.size
        np.warnings.filterwarnings('ignore')
        signUrg = np.where(np.all(p_value[:, :, 3] < threshold, axis=1))[0]
        signEvi = np.where(np.all(p_value[:, :, 4] < threshold, axis=1))[0]

        # neurons with positive/negative selectivity to urgency and evidence
        unitUrg['pos'] = np.intersect1d(signUrg,
                                        findPos(params[:, :, 3], -1e-10))
        unitUrg['neg'] = np.intersect1d(signUrg,
                                        findNeg(params[:, :, 3], 1e-10))

        unitEvi['pos'] = np.intersect1d(signEvi,
                                        findPos(params[:, :, 4], -1e-10))
        unitEvi['neg'] = np.intersect1d(signEvi,
                                        findNeg(params[:, :, 4], 1e-10))

        resp_urg, resp_evi = psth_align(resp_hidden, choice, shapes, unitUrg,
                                        unitEvi)
        psth_resp.append([resp_urg, resp_evi])

    return psth_resp
コード例 #4
0
def data_extract(file_paths):
    """
    
    """
    df_detail = []
    # theo denotes the bayesian inference
    df_summary = pd.DataFrame([], columns={'cho_prob', 'prpt', 'prpt_Baye'})
    for nth, file in enumerate(file_paths):

        paod, trial_briefs = load(file)
        trials = get_multinfo(paod, trial_briefs)
        files_pd = pd.DataFrame([
            trials["choice"], trials["reward"], trials["chosen"],
            trials["modality"], trials["direction"], trials["estimates"]
        ], [
            'choice', 'reward', 'chosen', 'modality', 'direction', 'estimates'
        ])
        files_pd = files_pd.T
        df_detail.append(files_pd)
        # choice probability in each directions and modalities
        cho_prob = [[], [], []]
        for i in np.unique(trials["direction"]):
            trial = np.where(trials["direction"] == i)[0]
            for ii in range(3):
                temp = np.intersect1d(trial,
                                      np.where(trials["modality"] == ii))
                cho_prob[ii].append(np.mean(trials["choice"][temp] == 1))

        modality = trials["modality"]
        Baye_choice = np.diag(
            np.vstack(trials["estimates"].values)[:, modality]) + 1

        # the std of fitted Gaussian curve is viewed as threshold
        prpt = psych_curve(trials["direction"], trials["choice"],
                           trials["modality"])
        prpt_Baye = psych_curve(trials["direction"], Baye_choice,
                                trials["modality"])
        df_summary.loc[nth] = {
            'cho_prob': cho_prob,
            'prpt': prpt,
            'prpt_Baye': prpt_Baye
        }
    return df_detail, df_summary
コード例 #5
0
def bhv_extract(file_paths):
    """
    
    """
    df_basic = pd.DataFrame([], columns = {'rt_mean','rt_sem','choice_prop',
                                           'cr','cr_log','fr','label'})
    df_logRT = pd.DataFrame([], columns = {'right_rt_log','left_rt_log',
                                           'rt', 'choice'})
    df_psycv = pd.DataFrame([], columns = {'cr','fr','psy_curve',
                                           'fitting_x0', 'fitting_k'})
    for i, file in enumerate(file_paths):

        paod, trial_briefs = load(file)
        _, choice, shape, _, finish_rate = get_bhvinfo(paod,trial_briefs)
        right_rt_log , left_rt_log = log_rt(shape, choice)
        psy_curve, prpt = psych_curve(shape, choice, 
                                      groups = np.linspace(-psycv_range,psycv_range,num=20))
        
        # keep summary data of each file for plotting
        df_basic.loc[i] = {'rt_mean':     shape.rt.mean(),
                           'rt_sem':      shape.rt.sem(),
                           'cr':          choice.correct.mean(),
                           'fr':          finish_rate,
                           'choice_prop': (choice.left.mean()+1)/2,
                           'cr_log':      choice.correct_logLR.mean(),
                           'label': file
                           }
        
        df_logRT.loc[i] = {'right_rt_log': right_rt_log['mean'].values, 
                           'left_rt_log':   left_rt_log['mean'].values,
                           'rt':           shape.rt,
                           'choice':       choice.left,
                       }
        
        df_psycv.loc[i] = {'psy_curve': psy_curve, 
                           'cr':          np.round(choice.correct.mean(),3),
                           'fr':          np.round(finish_rate,3),
                           'fitting_x0':  prpt[0], 
                           'fitting_k':   prpt[1]
                       }

    return df_basic, df_logRT, df_psycv
コード例 #6
0
def shape_extract(path_files):
    df_temporal = pd.DataFrame([], columns = {'label','bais','coef'})
    df_subweight = pd.DataFrame([], columns = {'label','bais','coef'})

    for i, file in enumerate(path_files):
        ## load files
        paod, trial_briefs = load(file)
        _, choice, shape, _, finish_rate = get_bhvinfo(paod,trial_briefs)
        reg_temporal  = temporal_weight(shape,choice)
        reg_subweight = subject_weight(shape, choice)
        
        df_temporal.loc[i] = {'label': file,
                              'bais':  reg_temporal['bais'],
                              'coef':  reg_temporal['coef'], 
                           }
        df_subweight.loc[i] = {'label': file,
                               'bais': reg_subweight['bais'],
                               'coef': reg_subweight['coef'], 
                               }
    
    return df_temporal, df_subweight
コード例 #7
0
def data_extract(file_paths):
    """
    
    """
    df_detail = []
    df_summary = pd.DataFrame([], columns = {'choice'})
    sign_neurons = {'pos_choice':[], 'neg_choice':[]}
    n_resp_all = []
    for i, file in enumerate(file_paths):

        paod, trial_briefs = load(file)
        trials = get_sureinfo(paod,trial_briefs)

        files_pd = pd.DataFrame([trials["choice"],trials["reward"],trials["randots_dur"],
                                 trials["sure_trial"],trials["coherence"]],
                                ['choice','reward','randots_dur','sure_trial','coherence'])
        files_pd = files_pd.T
        df_detail.append(files_pd)
        
        choice =[]
        for ii in coherence_list:
            choice.append([
                    ii,
                    np.where(trials["choice"][trials["coherence"]==ii]== 1)[0].shape[0],
                    np.where(trials["choice"][trials["coherence"]==ii]== 2)[0].shape[0],
                    np.where(trials["choice"][trials["coherence"]==ii]== 3)[0].shape[0]
                    ])
        choice = np.array(choice)
        df_summary.loc[i] = {'choice':choice}        

        # response of neurons in hidden layer
        n_resp = get_hidden_resp_sure(paod, trial_briefs) 
        n_resp_all.append(n_resp)
        # test the choice selectivity of each neuron 
        choice_sel = selectivity_test(n_resp, trials)
        sign_neurons['pos_choice'].append(np.array(choice_sel['pos']))
        sign_neurons['neg_choice'].append(np.array(choice_sel['neg']))

    return df_detail, df_summary, n_resp_all, sign_neurons
コード例 #8
0
def data_extract(file_paths):
    """
    
    """
    df_details = pd.DataFrame([],
                              columns={
                                  'state', 'choice', 'reward', 'block',
                                  'Q_diff', 'R_diff', 'Q_diff_pred'
                              })
    df_summary = pd.DataFrame(
        [],
        columns={
            'stay_num', 'type_num', 'cr', 'history', 'factors', 'fit_RL',
            'fit_lm', 'fit_sm'
        })

    for i, file in enumerate(file_paths):
        paod, trial_briefs = load(file)
        # load the choice information,
        trials = get_stinfo(paod, trial_briefs, completedOnly=False)
        # the correct rate
        cr = cr_block(trials)
        # load the choice information, only complete trials are included
        trials = get_stinfo(paod, trial_briefs)
        # the stay probability after each trial type
        stay_num, type_num, transition = stayprob(trials["choice"].values - 1,
                                                  trials["state"].values,
                                                  trials["reward"])
        # how the history affect choice
        coef_hist = hist_effect(transition,
                                trials["reward"],
                                trials["choice"],
                                hist_len=5)
        # how several factors affect choice
        coef_factors = factors_eff(transition, trials["reward"],
                                   trials["choice"], trials["block"])

        ## fit the bhv with a reinforcement learning model
        bounds = [[0, 1], [0, 1], [0, 1], [0, 1], [0, 3], [0, 3]]
        params = np.array([0.7, 0.5, 0.8, 0.5, 0.1, 0.1])
        cons = []  #construct the bounds in the form of constraints
        for factor in range(len(bounds)):
            l = {
                'type': 'ineq',
                'fun': lambda x: x[factor] - bounds[factor][0]
            }
            u = {
                'type': 'ineq',
                'fun': lambda x: bounds[factor][1] - x[factor]
            }
            cons.append(l)
            cons.append(u)

        nll_wrapper = lambda parameters: cost_mfmb(parameters, trials[
            "choice"] - 1, trials["block"], trials["state"] - 1, trials[
                "reward"])
        res = minimize(nll_wrapper,
                       x0=params,
                       method='SLSQP',
                       bounds=bounds,
                       constraints=cons)

        # estimate the q value based on the fitted parameters
        _, Q_value, _ = cost_mfmb(res.x,
                                  trials["choice"].values - 1,
                                  trials["block"].values,
                                  trials["state"].values - 1,
                                  trials["reward"].values,
                                  ReturnQ=True)

        # the response of units in hidden layer and output layer
        resp_hidden, resp_output = get_resp_ts(paod, trial_briefs)

        # the differnce of response of two action units before choice
        b4_cho, left_u, right_u = 4, 6, 7
        Q_diff = Q_value[:, 0, 0] - Q_value[:, 0, 1]
        R_diff = resp_output[1:, b4_cho, left_u] - resp_output[1:, b4_cho,
                                                               right_u]

        # fit with a linear model
        lmodel = Model(lin)
        result_l = lmodel.fit(Q_diff, x=R_diff, k=1, b=0)
        # fit with a sigmoid model
        smodel = Model(sigmoid)
        result_s = smodel.fit(Q_diff, x=R_diff, a=0, b=1, c=1, d=0)

        # fit the response of units in the hidden layer
        reg = LinearRegression().fit(resp_hidden[1:, b4_cho, :], Q_diff)
        Q_diff_pred = reg.predict(resp_hidden[1:, b4_cho, :])

        df_summary.loc[i] = {
            'stay_num': stay_num,
            'type_num': type_num,
            'history': coef_hist,
            'factors': coef_factors,
            'fit_RL': res.x,  # params, #
            'fit_lm': result_l,
            'fit_sm': result_s,
            'cr': cr
        }

        df_details.loc[i] = {
            'block': trials["block"].values,
            'state': trials["state"].values,
            'choice': trials["choice"].values,
            'reward': trials["reward"].values,
            'R_diff': R_diff,
            'Q_diff': Q_diff,
            'Q_diff_pred': Q_diff_pred
        }

    return df_details, df_summary