class Trainer(): def __init__(self, jumpWay): self.Helpers = Helpers() self.Logging = Logging() self.jumpwayCl = jumpWay self._confs = self.Helpers.loadConfigs() self.LogFile = self.Logging.setLogFile(self._confs["AI"]["Logs"] + "Train/") self.Logging.logMessage(self.LogFile, "LogFile", "INFO", "NLU Trainer LogFile Set") self.Model = Model() self.Data = Data(self.Logging, self.LogFile) self.intentMap = {} self.words = [] self.classes = [] self.dataCorpus = [] self.setupData() self.setupEntities() def setupData(self): self.trainingData = self.Data.loadTrainingData() self.Logging.logMessage(self.LogFile, "Trainer", "INFO", "Loaded NLU Training Data") self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData( self.trainingData) self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus, self.words) self.Logging.logMessage(self.LogFile, "TRAIN", "INFO", "NLU Trainer Data Ready") def setupEntities(self): if self._confs["ClassifierSettings"]["Entities"] == "Mitie": self.entityExtractor = Entities() self.Logging.logMessage(self.LogFile, "TRAIN", "OK", "NLU Trainer Entity Extractor Ready") self.entityExtractor.trainEntities( self._confs["ClassifierSettings"]["Mitie"]["ModelLocation"], self.trainingData) def trainModel(self): while True: self.Logging.logMessage(self.LogFile, "TRAIN", "ACTION", "Ready To Begin Training ? (Yes/No)") userInput = input(">") if userInput == 'Yes': break if userInput == 'No': exit() humanStart, trainingStart = self.Helpers.timerStart() self.Logging.logMessage(self.LogFile, "TRAIN", "INFO", "NLU Model Training At " + humanStart) self.jumpwayCl.publishToDeviceChannel( "Training", { "NeuralNet": "NLU", "Start": trainingStart, "End": "In Progress", "Total": "In Progress", "Message": "NLU Model Training At " + humanStart }) self.Model.trainDNN(self.x, self.y, self.words, self.classes, self.intentMap) trainingEnd, trainingTime, humanEnd = self.Helpers.timerEnd( trainingStart) self.Logging.logMessage( self.LogFile, "TRAIN", "OK", "NLU Model Trained At " + humanEnd + " In " + str(trainingEnd) + " Seconds") self.jumpwayCl.publishToDeviceChannel( "Training", { "NeuralNet": "NLU", "Start": trainingStart, "End": trainingEnd, "Total": trainingTime, "Message": "NLU Model Trained At " + humanEnd + " In " + str(trainingEnd) + " Seconds" })
class Trainer(): ############################################################### # # Sets up all default requirements and placeholders # needed for the NLU engine to run. # # - Helpers: Useful global functions # - JumpWay/jumpWayClient: iotJumpWay class and connection # - Logging: Logging class # ############################################################### def __init__(self, jumpWay): self.Helpers = Helpers() self._confs = self.Helpers.loadConfigs() self.LogFile = self.Helpers.setLogFile(self._confs["aiCore"]["Logs"] + "Train/") self.jumpwayCl = jumpWay self.intentMap = {} self.words = [] self.classes = [] self.dataCorpus = [] self.Model = Model() self.Data = Data() def setupData(self): self.trainingData = self.Data.loadTrainingData() self.words, self.classes, self.dataCorpus, self.intentMap = self.Data.prepareData( self.trainingData) self.x, self.y = self.Data.finaliseData(self.classes, self.dataCorpus, self.words) self.Helpers.logMessage(self.LogFile, "TRAIN", "INFO", "NLU Training Data Ready") def setupEntities(self): if self._confs["NLU"]["Entities"] == "Mitie": self.entityController = Entities() self.entityController.trainEntities( self._confs["NLU"]["Mitie"]["ModelLocation"], self.trainingData) self.Helpers.logMessage(self.LogFile, "TRAIN", "OK", "NLU Trainer Entities Ready") def trainModel(self): while True: self.Helpers.logMessage(self.LogFile, "TRAIN", "ACTION", "Ready To Begin Training ? (Yes/No)") userInput = input(">") if userInput == 'Yes': break if userInput == 'No': exit() self.setupData() self.setupEntities() humanStart, trainingStart = self.Helpers.timerStart() self.jumpwayCl.publishToDeviceChannel( "Training", { "NeuralNet": "NLU", "Start": trainingStart, "End": "In Progress", "Total": "In Progress", "Message": "NLU Model Training At " + humanStart }) self.Model.trainDNN(self.x, self.y, self.words, self.classes, self.intentMap) trainingEnd, trainingTime, humanEnd = self.Helpers.timerEnd( trainingStart) self.Helpers.logMessage( self.LogFile, "TRAIN", "OK", "NLU Model Trained At " + humanEnd + " In " + str(trainingEnd) + " Seconds") self.jumpwayCl.publishToDeviceChannel( "Training", { "NeuralNet": "NLU", "Start": trainingStart, "End": trainingEnd, "Total": trainingTime, "Message": "NLU Model Trained At " + humanEnd + " In " + str(trainingEnd) + " Seconds" })