class Test(unittest.TestCase): def setUp(self): # create histograms h_bkg1_1 = Hist(100, 40, 200, title='Background') h_signal_1 = h_bkg1_1.Clone(title='Signal') h_data_1 = h_bkg1_1.Clone(title='Data') # fill the histograms with our distributions map(h_bkg1_1.Fill, x1) map(h_signal_1.Fill, x2) map(h_data_1.Fill, x1_obs) map(h_data_1.Fill, x2_obs) histograms_1 = {'signal': h_signal_1, 'bkg1': h_bkg1_1, # 'data': h_data_1 } fit_data_1 = FitData(h_data_1, histograms_1, fit_boundaries=(40, 200)) self.single_fit_collection = FitDataCollection() self.single_fit_collection.add( fit_data_1 ) # self.roofitFitter = RooFitFit(histograms_1, dataLabel='data', fit_boundries=(40, 200)) self.roofitFitter = RooFitFit(self.single_fit_collection) def tearDown(self): pass def test_normalisation(self): normalisation = self.roofitFitter.normalisation self.assertAlmostEqual(normalisation["data"], N_data, delta=sqrt(N_data)) self.assertAlmostEqual(normalisation["bkg1"], N_bkg1, delta=sqrt(N_bkg1)) self.assertAlmostEqual(normalisation["signal"], N_signal, delta=sqrt(N_signal)) def test_signal_result(self): self.roofitFitter.fit() results = self.roofitFitter.readResults() self.assertAlmostEqual(N_signal_obs, results['signal'][0], delta=2 * results['signal'][1]) self.assertAlmostEqual(N_bkg1_obs, results['bkg1'][0], delta=2 * results['bkg1'][1]) def test_constraints(self): self.single_fit_collection.set_normalisation_constraints({'signal': 0.8, 'bkg1': 0.5}) self.roofitFitter = RooFitFit(self.single_fit_collection) # self.roofitFitter.set_fit_constraints({'signal': 0.8, 'bkg1': 0.5}) self.roofitFitter.fit() results = self.roofitFitter.readResults() self.assertAlmostEqual(N_signal_obs, results['signal'][0], delta=2 * results['signal'][1]) self.assertAlmostEqual(N_bkg1_obs, results['bkg1'][0], delta=2 * results['bkg1'][1])
class Test(unittest.TestCase): def setUp(self): # create histograms h_bkg1_1 = Hist(100, 40, 200, title='Background') h_signal_1 = h_bkg1_1.Clone(title='Signal') h_data_1 = h_bkg1_1.Clone(title='Data') # fill the histograms with our distributions map(h_bkg1_1.Fill, x1) map(h_signal_1.Fill, x2) map(h_data_1.Fill, x1_obs) map(h_data_1.Fill, x2_obs) histograms_1 = { 'signal': h_signal_1, 'bkg1': h_bkg1_1, # 'data': h_data_1 } fit_data_1 = FitData(h_data_1, histograms_1, fit_boundaries=(40, 200)) self.single_fit_collection = FitDataCollection() self.single_fit_collection.add(fit_data_1) # self.roofitFitter = RooFitFit(histograms_1, dataLabel='data', fit_boundries=(40, 200)) self.roofitFitter = RooFitFit(self.single_fit_collection) def tearDown(self): pass def test_normalisation(self): normalisation = self.roofitFitter.normalisation self.assertAlmostEqual(normalisation["data"], N_data, delta=sqrt(N_data)) self.assertAlmostEqual(normalisation["bkg1"], N_bkg1, delta=sqrt(N_bkg1)) self.assertAlmostEqual(normalisation["signal"], N_signal, delta=sqrt(N_signal)) def test_signal_result(self): self.roofitFitter.fit() results = self.roofitFitter.readResults() self.assertAlmostEqual(N_signal_obs, results['signal'][0], delta=2 * results['signal'][1]) self.assertAlmostEqual(N_bkg1_obs, results['bkg1'][0], delta=2 * results['bkg1'][1]) def test_constraints(self): self.single_fit_collection.set_normalisation_constraints({ 'signal': 0.8, 'bkg1': 0.5 }) self.roofitFitter = RooFitFit(self.single_fit_collection) # self.roofitFitter.set_fit_constraints({'signal': 0.8, 'bkg1': 0.5}) self.roofitFitter.fit() results = self.roofitFitter.readResults() self.assertAlmostEqual(N_signal_obs, results['signal'][0], delta=2 * results['signal'][1]) self.assertAlmostEqual(N_bkg1_obs, results['bkg1'][0], delta=2 * results['bkg1'][1])
def get_fitted_normalisation_from_ROOT( channel, input_files, variable, met_type, b_tag_bin, scale_factors = None ): ''' Retrieves the number of ttbar events from fits to one or more distribution (fit_variables) for each bin in the variable. ''' global use_fitter, measurement_config, verbose, fit_variables, options # results and initial values are the same across different fit variables # templates are not results = {} initial_values = {} templates = {fit_variable: {} for fit_variable in fit_variables} for variable_bin in variable_bins_ROOT[variable]: fitter = None fit_data_collection = FitDataCollection() for fit_variable in fit_variables: histograms = get_histograms( channel, input_files, variable = variable, met_type = met_type, variable_bin = variable_bin, b_tag_bin = b_tag_bin, rebin = measurement_config.rebin[fit_variable], fit_variable = fit_variable, scale_factors = scale_factors, ) # create data sets h_fit_variable_signal = None mc_histograms = None if options.make_combined_signal: if measurement_config.include_higgs: h_fit_variable_signal = histograms['TTJet'] + histograms['SingleTop'] + histograms['Higgs'] else: h_fit_variable_signal = histograms['TTJet'] + histograms['SingleTop'] mc_histograms = { 'signal' : h_fit_variable_signal, 'V+Jets': histograms['V+Jets'], 'QCD': histograms['QCD'], } else: mc_histograms = { 'TTJet': histograms['TTJet'], 'SingleTop': histograms['SingleTop'], 'V+Jets': histograms['V+Jets'], 'QCD': histograms['QCD'], } h_data = histograms['data'] if options.closure_test: ct_type = options.closure_test_type ct_norm = closure_tests[ct_type] h_data = histograms['TTJet'] * ct_norm['TTJet'] + histograms['SingleTop'] * ct_norm['SingleTop'] + histograms['V+Jets'] * ct_norm['V+Jets'] + histograms['QCD'] * ct_norm['QCD'] fit_data = FitData( h_data, mc_histograms, fit_boundaries = measurement_config.fit_boundaries[fit_variable] ) fit_data_collection.add( fit_data, name = fit_variable ) if options.enable_constraints: fit_data_collection.set_normalisation_constraints( {'QCD': 2.0, 'V+Jets': 0.5} ) if use_fitter == 'RooFit': fitter = RooFitFit( fit_data_collection ) elif use_fitter == 'Minuit': fitter = Minuit( fit_data_collection, verbose = verbose ) else: # not recognised sys.stderr.write( 'Do not recognise fitter "%s". Using default (Minuit).\n' % fitter ) fitter = Minuit ( fit_data_collection ) if verbose: print "FITTING: " + channel + '_' + variable + '_' + variable_bin + '_' + met_type + '_' + b_tag_bin fitter.fit() fit_results = fitter.readResults() normalisation = fit_data_collection.mc_normalisation( fit_variables[0] ) normalisation_errors = fit_data_collection.mc_normalisation_errors( fit_variables[0] ) if options.make_combined_signal: N_ttbar_before_fit = histograms['TTJet'].Integral() N_SingleTop_before_fit = histograms['SingleTop'].Integral() N_ttbar_error_before_fit = sum(histograms['TTJet'].yerravg()) N_SingleTop_error_before_fit = sum(histograms['SingleTop'].yerravg()) N_Higgs_before_fit = 0 N_Higgs_error_before_fit = 0 if measurement_config.include_higgs: N_Higgs_before_fit = histograms['Higgs'].Integral() N_Higgs_error_before_fit = sum(histograms['Higgs'].yerravg()) if (N_SingleTop_before_fit != 0): TTJet_SingleTop_ratio = (N_ttbar_before_fit + N_Higgs_before_fit) / N_SingleTop_before_fit else: print 'Bin ', variable_bin, ': ttbar/singleTop ratio undefined for %s channel! Setting to 0.' % channel TTJet_SingleTop_ratio = 0 N_ttbar_all, N_SingleTop = decombine_result(fit_results['signal'], TTJet_SingleTop_ratio) if (N_Higgs_before_fit != 0): TTJet_Higgs_ratio = N_ttbar_before_fit/ N_Higgs_before_fit else: TTJet_Higgs_ratio = 0 N_ttbar, N_Higgs = decombine_result(N_ttbar_all, TTJet_Higgs_ratio) fit_results['TTJet'] = N_ttbar fit_results['SingleTop'] = N_SingleTop fit_results['Higgs'] = N_Higgs normalisation['TTJet'] = N_ttbar_before_fit normalisation['SingleTop'] = N_SingleTop_before_fit normalisation['Higgs'] = N_Higgs_before_fit normalisation_errors['TTJet'] = N_ttbar_error_before_fit normalisation_errors['SingleTop'] = N_SingleTop_error_before_fit normalisation_errors['Higgs'] = N_Higgs_error_before_fit if results == {}: # empty initial_values['data'] = [( normalisation['data'], normalisation_errors['data'] )] for fit_variable in fit_variables: templates[fit_variable]['data'] = [fit_data_collection.vectors( fit_variable )['data']] for sample in fit_results.keys(): results[sample] = [fit_results[sample]] initial_values[sample] = [( normalisation[sample], normalisation_errors[sample] )] if sample in ['TTJet', 'SingleTop', 'Higgs'] and options.make_combined_signal: continue for fit_variable in fit_variables: templates[fit_variable][sample] = [fit_data_collection.vectors( fit_variable )[sample]] else: initial_values['data'].append( [normalisation['data'], normalisation_errors['data']] ) for fit_variable in fit_variables: templates[fit_variable]['data'].append( fit_data_collection.vectors( fit_variable )['data'] ) for sample in fit_results.keys(): results[sample].append( fit_results[sample] ) initial_values[sample].append( [normalisation[sample], normalisation_errors[sample]] ) if sample in ['TTJet', 'SingleTop', 'Higgs'] and options.make_combined_signal: continue for fit_variable in fit_variables: templates[fit_variable][sample].append( fit_data_collection.vectors( fit_variable )[sample] ) # print "results = ", results return results, initial_values, templates
def get_fitted_normalisation_from_ROOT(channel, input_files, variable, met_systematic, met_type, b_tag_bin, treePrefix, weightBranch, scale_factors=None): ''' Retrieves the number of ttbar events from fits to one or more distribution (fit_variables) for each bin in the variable. ''' global use_fitter, measurement_config, verbose, fit_variables, options # results and initial values are the same across different fit variables # templates are not results = {} initial_values = {} templates = {fit_variable: {} for fit_variable in fit_variables} for variable_bin in variable_bins_ROOT[variable]: fitter = None fit_data_collection = FitDataCollection() for fit_variable in fit_variables: histograms = get_histograms( channel, input_files, variable=variable, met_systematic=met_systematic, met_type=met_type, variable_bin=variable_bin, b_tag_bin=b_tag_bin, rebin=measurement_config.rebin[fit_variable], fit_variable=fit_variable, scale_factors=scale_factors, treePrefix=treePrefix, weightBranch=weightBranch, ) # create data sets h_fit_variable_signal = None mc_histograms = None # if options.make_combined_signal: # h_fit_variable_signal = histograms['TTJet'] + histograms['SingleTop'] # mc_histograms = { # 'signal' : h_fit_variable_signal, # 'V+Jets': histograms['V+Jets'], # 'QCD': histograms['QCD'], # } # else: mc_histograms = { 'TTJet': histograms['TTJet'], 'SingleTop': histograms['SingleTop'], 'V+Jets': histograms['V+Jets'], 'QCD': histograms['QCD'], } h_data = histograms['data'] # if options.closure_test: # ct_type = options.closure_test_type # ct_norm = closure_tests[ct_type] # h_data = histograms['TTJet'] * ct_norm['TTJet'] + histograms['SingleTop'] * ct_norm['SingleTop'] + histograms['V+Jets'] * ct_norm['V+Jets'] + histograms['QCD'] * ct_norm['QCD'] fit_data = FitData( h_data, mc_histograms, fit_boundaries=measurement_config.fit_boundaries[fit_variable]) fit_data_collection.add(fit_data, name=fit_variable) # if options.enable_constraints: # fit_data_collection.set_normalisation_constraints( {'QCD': 2.0, 'V+Jets': 0.5} ) if use_fitter == 'RooFit': fitter = RooFitFit(fit_data_collection) elif use_fitter == 'Minuit': fitter = Minuit(fit_data_collection, verbose=verbose) else: # not recognised sys.stderr.write( 'Do not recognise fitter "%s". Using default (Minuit).\n' % fitter) fitter = Minuit(fit_data_collection) if verbose: print "FITTING: " + channel + '_' + variable + '_' + variable_bin + '_' + met_type + '_' + b_tag_bin fitter.fit() fit_results = fitter.readResults() normalisation = fit_data_collection.mc_normalisation(fit_variables[0]) normalisation_errors = fit_data_collection.mc_normalisation_errors( fit_variables[0]) # if options.make_combined_signal: # N_ttbar_before_fit = histograms['TTJet'].Integral() # N_SingleTop_before_fit = histograms['SingleTop'].Integral() # N_ttbar_error_before_fit = sum(histograms['TTJet'].yerravg()) # N_SingleTop_error_before_fit = sum(histograms['SingleTop'].yerravg()) # N_Higgs_before_fit = 0 # N_Higgs_error_before_fit = 0 # if measurement_config.include_higgs: # N_Higgs_before_fit = histograms['Higgs'].Integral() # N_Higgs_error_before_fit = sum(histograms['Higgs'].yerravg()) # if (N_SingleTop_before_fit != 0): # TTJet_SingleTop_ratio = (N_ttbar_before_fit + N_Higgs_before_fit) / N_SingleTop_before_fit # else: # print 'Bin ', variable_bin, ': ttbar/singleTop ratio undefined for %s channel! Setting to 0.' % channel # TTJet_SingleTop_ratio = 0 # N_ttbar_all, N_SingleTop = decombine_result(fit_results['signal'], TTJet_SingleTop_ratio) # if (N_Higgs_before_fit != 0): # TTJet_Higgs_ratio = N_ttbar_before_fit/ N_Higgs_before_fit # else: # TTJet_Higgs_ratio = 0 # N_ttbar, N_Higgs = decombine_result(N_ttbar_all, TTJet_Higgs_ratio) # fit_results['TTJet'] = N_ttbar # fit_results['SingleTop'] = N_SingleTop # fit_results['Higgs'] = N_Higgs # normalisation['TTJet'] = N_ttbar_before_fit # normalisation['SingleTop'] = N_SingleTop_before_fit # normalisation['Higgs'] = N_Higgs_before_fit # normalisation_errors['TTJet'] = N_ttbar_error_before_fit # normalisation_errors['SingleTop'] = N_SingleTop_error_before_fit # normalisation_errors['Higgs'] = N_Higgs_error_before_fit if results == {}: # empty initial_values['data'] = [(normalisation['data'], normalisation_errors['data'])] for fit_variable in fit_variables: templates[fit_variable]['data'] = [ fit_data_collection.vectors(fit_variable)['data'] ] for sample in fit_results.keys(): results[sample] = [fit_results[sample]] initial_values[sample] = [(normalisation[sample], normalisation_errors[sample])] if sample in ['TTJet', 'SingleTop', 'Higgs' ] and options.make_combined_signal: continue for fit_variable in fit_variables: templates[fit_variable][sample] = [ fit_data_collection.vectors(fit_variable)[sample] ] else: initial_values['data'].append( [normalisation['data'], normalisation_errors['data']]) for fit_variable in fit_variables: templates[fit_variable]['data'].append( fit_data_collection.vectors(fit_variable)['data']) for sample in fit_results.keys(): results[sample].append(fit_results[sample]) initial_values[sample].append( [normalisation[sample], normalisation_errors[sample]]) if sample in ['TTJet', 'SingleTop', 'Higgs' ] and options.make_combined_signal: continue for fit_variable in fit_variables: templates[fit_variable][sample].append( fit_data_collection.vectors(fit_variable)[sample]) # print results # print "results = ", results # print 'templates = ',templates return results, initial_values, templates