コード例 #1
0
 def assert_balanced(self, node):
     sums = []
     for sstabledir in node.get_sstables_per_data_directory('keyspace1', 'standard1'):
         sum = 0
         for sstable in sstabledir:
             sum = sum + os.path.getsize(sstable)
         sums.append(sum)
     assert_almost_equal(*sums, error=0.1, error_message=node.name)
コード例 #2
0
 def assert_balanced(self, node):
     sums = []
     for sstabledir in node.get_sstables_per_data_directory('keyspace1', 'standard1'):
         sum = 0
         for sstable in sstabledir:
             sum = sum + os.path.getsize(sstable)
         sums.append(sum)
     assert_almost_equal(*sums, error=0.1, error_message=node.name)
コード例 #3
0
    def test_assertions(self):
        # assert_exception_test
        mock_session = Mock(
            **
            {'execute.side_effect': AlreadyExists("Dummy exception message.")})
        assert_exception(mock_session, "DUMMY QUERY", expected=AlreadyExists)

        # assert_unavailable_test
        mock_session = Mock(**{
            'execute.side_effect':
            Unavailable("Dummy Unavailabile message.")
        })
        assert_unavailable(mock_session.execute)

        # assert_invalid_test
        mock_session = Mock(**{
            'execute.side_effect':
            InvalidRequest("Dummy InvalidRequest message.")
        })
        assert_invalid(mock_session, "DUMMY QUERY")

        # assert_unauthorized_test
        mock_session = Mock(**{
            'execute.side_effect':
            Unauthorized("Dummy Unauthorized message.")
        })
        assert_unauthorized(mock_session, "DUMMY QUERY", None)

        # assert_one_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[[1, 1]])
        assert_one(mock_session, "SELECT * FROM test", [1, 1])

        # assert_none_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[])
        assert_none(mock_session, "SELECT * FROM test")

        # assert_all_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[[i, i]
                                                  for i in range(0, 10)])
        assert_all(mock_session,
                   "SELECT k, v FROM test", [[i, i] for i in range(0, 10)],
                   ignore_order=True)

        # assert_almost_equal_test
        assert_almost_equal(1, 1.1, 1.2, 1.9, error=1.0)

        # assert_row_count_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[[1]])
        assert_row_count(mock_session, 'test', 1)

        # assert_length_equal_test
        check = [1, 2, 3, 4]
        assert_length_equal(check, 4)
コード例 #4
0
    def test_decommission(self):
        cluster = self.cluster

        tokens = cluster.balanced_tokens(4)
        cluster.populate(4, tokens=tokens).start()
        node1, node2, node3, node4 = cluster.nodelist()

        session = self.patient_cql_connection(node1)
        create_ks(session, 'ks', 2)
        create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        insert_c1c2(session, n=30000, consistency=ConsistencyLevel.QUORUM)

        cluster.flush()
        sizes = [node.data_size() for node in cluster.nodelist() if node.is_running()]
        init_size = sizes[0]
        assert_almost_equal(*sizes)

        time.sleep(.5)
        node4.decommission()
        node4.stop()
        cluster.cleanup()
        time.sleep(.5)

        # Check we can get all the keys
        for n in range(0, 30000):
            query_c1c2(session, n, ConsistencyLevel.QUORUM)

        sizes = [node.data_size() for node in cluster.nodelist() if node.is_running()]
        logger.debug(sizes)
        assert_almost_equal(sizes[0], sizes[1])
        assert_almost_equal((2.0 / 3.0) * sizes[0], sizes[2])
        assert_almost_equal(sizes[2], init_size)
コード例 #5
0
    def ttl_is_respected_on_repair_test(self):
        """ Test that ttl is respected on repair """

        self.prepare()
        self.session1.execute("""
            ALTER KEYSPACE ks WITH REPLICATION =
            {'class' : 'SimpleStrategy', 'replication_factor' : 1};
        """)
        self.session1.execute("""
            INSERT INTO ttl_table (key, col1) VALUES (1, 1) USING TTL 5;
        """)
        self.session1.execute("""
            INSERT INTO ttl_table (key, col1) VALUES (2, 2) USING TTL 1000;
        """)

        assert_all(
            self.session1,
            "SELECT * FROM ttl_table;",
            [[1, 1, None, None], [2, 2, None, None]]
        )
        time.sleep(7)
        self.node1.stop()
        session2 = self.patient_exclusive_cql_connection(self.node2)
        session2.execute("USE ks;")
        assert_unavailable(session2.execute, "SELECT * FROM ttl_table;")
        self.node1.start(wait_for_binary_proto=True)
        self.session1 = self.patient_exclusive_cql_connection(self.node1)
        self.session1.execute("USE ks;")
        self.session1.execute("""
            ALTER KEYSPACE ks WITH REPLICATION =
            {'class' : 'SimpleStrategy', 'replication_factor' : 2};
        """)
        self.node1.repair(['ks'])
        ttl_start = time.time()
        ttl_session1 = self.session1.execute('SELECT ttl(col1) FROM ttl_table;')
        self.node1.stop()

        assert_row_count(session2, 'ttl_table', 1)
        assert_all(
            session2,
            "SELECT * FROM ttl_table;",
            [[2, 2, None, None]]
        )

        # Check that the TTL on both server are the same
        ttl_session2 = session2.execute('SELECT ttl(col1) FROM ttl_table;')
        ttl_session1 = ttl_session1[0][0] - (time.time() - ttl_start)
        assert_almost_equal(ttl_session1, ttl_session2[0][0], error=0.005)
コード例 #6
0
    def test_ttl_is_respected_on_repair(self):
        """ Test that ttl is respected on repair """
        self.prepare()
        self.session1.execute("""
            ALTER KEYSPACE ks WITH REPLICATION =
            {'class' : 'SimpleStrategy', 'replication_factor' : 1};
        """)
        self.session1.execute("""
            INSERT INTO ttl_table (key, col1) VALUES (1, 1) USING TTL 5;
        """)
        self.session1.execute("""
            INSERT INTO ttl_table (key, col1) VALUES (2, 2) USING TTL 1000;
        """)

        assert_all(
            self.session1,
            "SELECT * FROM ttl_table;",
            [[1, 1, None, None], [2, 2, None, None]]
        )
        time.sleep(7)
        self.node1.stop()
        session2 = self.patient_exclusive_cql_connection(self.node2)
        session2.execute("USE ks;")
        assert_unavailable(session2.execute, "SELECT * FROM ttl_table;")
        self.node1.start(wait_for_binary_proto=True)
        self.session1 = self.patient_exclusive_cql_connection(self.node1)
        self.session1.execute("USE ks;")
        self.session1.execute("""
            ALTER KEYSPACE ks WITH REPLICATION =
            {'class' : 'SimpleStrategy', 'replication_factor' : 2};
        """)
        self.node1.repair(['ks'])
        ttl_start = time.time()
        ttl_session1 = self.session1.execute('SELECT ttl(col1) FROM ttl_table;')
        self.node1.stop()

        assert_row_count(session2, 'ttl_table', 1)
        assert_all(
            session2,
            "SELECT * FROM ttl_table;",
            [[2, 2, None, None]]
        )

        # Check that the TTL on both server are the same
        ttl_session2 = session2.execute('SELECT ttl(col1) FROM ttl_table;')
        ttl_session1 = ttl_session1[0][0] - (time.time() - ttl_start)
        assert_almost_equal(ttl_session1, ttl_session2[0][0], error=0.005)
コード例 #7
0
    def _segment_size_test(self, segment_size_in_mb, compressed=False):
        """
        Execute a basic commitlog test and validate the commitlog files
        """
        conf = {'commitlog_segment_size_in_mb': segment_size_in_mb}
        if compressed:
            conf['commitlog_compression'] = [{'class_name': 'LZ4Compressor'}]
        conf['memtable_heap_space_in_mb'] = 512
        self.prepare(configuration=conf, create_test_keyspace=False)

        segment_size = segment_size_in_mb * 1024 * 1024
        self.node1.stress(
            ['write', 'n=150k', 'no-warmup', '-rate', 'threads=25'])
        time.sleep(1)

        commitlogs = self._get_commitlog_files()
        self.assertGreater(len(commitlogs), 0,
                           'No commit log files were created')

        # the most recently-written segment of the commitlog may be smaller
        # than the expected size, so we allow exactly one segment to be smaller
        smaller_found = False
        for i, f in enumerate(commitlogs):
            size = os.path.getsize(f)
            size_in_mb = int(size / 1024 / 1024)
            debug('segment file {} {}; smaller already found: {}'.format(
                f, size_in_mb, smaller_found))
            if size_in_mb < 1 or size < (segment_size * 0.1):
                debug('segment file not yet used; moving to next file')
                continue  # commitlog not yet used

            try:
                if compressed:
                    # if compression is used, we assume there will be at most a 50% compression ratio
                    self.assertLess(size, segment_size)
                    self.assertGreater(size, segment_size / 2)
                else:
                    # if no compression is used, the size will be close to what we expect
                    assert_almost_equal(size, segment_size, error=0.05)
            except AssertionError as e:
                # the last segment may be smaller
                if not smaller_found:
                    self.assertLessEqual(size, segment_size)
                    smaller_found = True
                else:
                    raise e
コード例 #8
0
    def assertions_test(self):
        # assert_exception_test
        mock_session = Mock(**{'execute.side_effect': AlreadyExists("Dummy exception message.")})
        assert_exception(mock_session, "DUMMY QUERY", expected=AlreadyExists)

        # assert_unavailable_test
        mock_session = Mock(**{'execute.side_effect': Unavailable("Dummy Unavailabile message.")})
        assert_unavailable(mock_session.execute)

        # assert_invalid_test
        mock_session = Mock(**{'execute.side_effect': InvalidRequest("Dummy InvalidRequest message.")})
        assert_invalid(mock_session, "DUMMY QUERY")

        # assert_unauthorized_test
        mock_session = Mock(**{'execute.side_effect': Unauthorized("Dummy Unauthorized message.")})
        assert_unauthorized(mock_session, "DUMMY QUERY", None)

        # assert_one_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[[1, 1]])
        assert_one(mock_session, "SELECT * FROM test", [1, 1])

        # assert_none_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[])
        assert_none(mock_session, "SELECT * FROM test")

        # assert_all_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[[i, i] for i in range(0, 10)])
        assert_all(mock_session, "SELECT k, v FROM test", [[i, i] for i in range(0, 10)], ignore_order=True)

        # assert_almost_equal_test
        assert_almost_equal(1, 1.1, 1.2, 1.9, error=1.0)

        # assert_row_count_test
        mock_session = Mock()
        mock_session.execute = Mock(return_value=[[1]])
        assert_row_count(mock_session, 'test', 1)

        # assert_length_equal_test
        check = [1, 2, 3, 4]
        assert_length_equal(check, 4)
コード例 #9
0
    def _segment_size_test(self, segment_size_in_mb, compressed=False):
        """
        Execute a basic commitlog test and validate the commitlog files
        """
        conf = {'commitlog_segment_size_in_mb': segment_size_in_mb}
        if compressed:
            conf['commitlog_compression'] = [{'class_name': 'LZ4Compressor'}]
        conf['memtable_heap_space_in_mb'] = 512
        self.prepare(configuration=conf, create_test_keyspace=False)

        segment_size = segment_size_in_mb * 1024 * 1024
        self.node1.stress(['write', 'n=150k', 'no-warmup', '-rate', 'threads=25'])
        time.sleep(1)

        commitlogs = self._get_commitlog_files()
        self.assertGreater(len(commitlogs), 0, 'No commit log files were created')

        # the most recently-written segment of the commitlog may be smaller
        # than the expected size, so we allow exactly one segment to be smaller
        smaller_found = False
        for i, f in enumerate(commitlogs):
            size = os.path.getsize(f)
            size_in_mb = int(size / 1024 / 1024)
            debug('segment file {} {}; smaller already found: {}'.format(f, size_in_mb, smaller_found))
            if size_in_mb < 1 or size < (segment_size * 0.1):
                debug('segment file not yet used; moving to next file')
                continue  # commitlog not yet used

            try:
                if compressed:
                    # if compression is used, we assume there will be at most a 50% compression ratio
                    self.assertLess(size, segment_size)
                    self.assertGreater(size, segment_size / 2)
                else:
                    # if no compression is used, the size will be close to what we expect
                    assert_almost_equal(size, segment_size, error=0.05)
            except AssertionError as e:
                # the last segment may be smaller
                if not smaller_found:
                    self.assertLessEqual(size, segment_size)
                    smaller_found = True
                else:
                    raise e
コード例 #10
0
    def assert_balanced(self, node):
        old_sums = new_sums = None
        # This extra looping and logic is to account for a race with obsolete file deletions, which are scheduled
        # asynchronously in the server. We want to allow a chance to settle if files are still being removed
        for _ in range(20):
            old_sums = new_sums
            new_sums = []
            for sstabledir in node.get_sstables_per_data_directory(
                    'keyspace1', 'standard1'):
                sum = 0
                for sstable in sstabledir:
                    sum = sum + os.path.getsize(sstable)
                new_sums.append(sum)
            if new_sums == old_sums:
                break
            sleep(2)

        assert len(new_sums)
        assert new_sums == old_sums  # we settled
        assert_almost_equal(*new_sums, error=0.1, error_message=node.name)
コード例 #11
0
    def test_movement(self):
        cluster = self.cluster

        # Create an unbalanced ring
        cluster.populate(3, tokens=[0, 2**48, 2**62]).start()
        node1, node2, node3 = cluster.nodelist()

        session = self.patient_cql_connection(node1)
        create_ks(session, 'ks', 1)
        create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        insert_c1c2(session, n=30000, consistency=ConsistencyLevel.ONE)

        cluster.flush()

        # Move nodes to balance the cluster
        def move_node(node, token):
            mark = node.mark_log()
            node.move(token)  # can't assume 0 is balanced with m3p
            node.watch_log_for('{} state jump to NORMAL'.format(
                node.address_for_current_version()),
                               from_mark=mark,
                               timeout=180)
            time.sleep(3)

        balancing_tokens = cluster.balanced_tokens(3)

        move_node(node1, balancing_tokens[0])
        move_node(node2, balancing_tokens[1])
        move_node(node3, balancing_tokens[2])

        time.sleep(1)
        cluster.cleanup()
        for node in cluster.nodelist():
            # after moving nodes we need to relocate any tokens in the wrong places, and after doing that
            # we might have overlapping tokens on the disks, so run a major compaction to get balance even
            if cluster.version() >= '3.2':
                node.nodetool("relocatesstables")
            node.nodetool("compact")

        # Check we can get all the keys
        for n in range(0, 30000):
            query_c1c2(session, n, ConsistencyLevel.ONE)

        # Now the load should be basically even
        sizes = [node.data_size() for node in [node1, node2, node3]]

        assert_almost_equal(sizes[0], sizes[1], error=0.05)
        assert_almost_equal(sizes[0], sizes[2], error=0.05)
        assert_almost_equal(sizes[1], sizes[2], error=0.05)
コード例 #12
0
    def test_movement(self):
        cluster = self.cluster

        # Create an unbalanced ring
        cluster.populate(3, tokens=[0, 2**48, 2**62]).start()
        node1, node2, node3 = cluster.nodelist()

        session = self.patient_cql_connection(node1)
        create_ks(session, 'ks', 1)
        create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        insert_c1c2(session, n=30000, consistency=ConsistencyLevel.ONE)

        cluster.flush()

        # Move nodes to balance the cluster
        def move_node(node, token):
            mark = node.mark_log()
            node.move(token)  # can't assume 0 is balanced with m3p
            node.watch_log_for('{} state jump to NORMAL'.format(node.address_for_current_version()), from_mark=mark, timeout=180)
            time.sleep(3)

        balancing_tokens = cluster.balanced_tokens(3)

        move_node(node1, balancing_tokens[0])
        move_node(node2, balancing_tokens[1])
        move_node(node3, balancing_tokens[2])

        time.sleep(1)
        cluster.cleanup()
        for node in cluster.nodelist():
            # after moving nodes we need to relocate any tokens in the wrong places, and after doing that
            # we might have overlapping tokens on the disks, so run a major compaction to get balance even
            if cluster.version() >= '3.2':
                node.nodetool("relocatesstables")
            node.nodetool("compact")

        # Check we can get all the keys
        for n in range(0, 30000):
            query_c1c2(session, n, ConsistencyLevel.ONE)

        # Now the load should be basically even
        sizes = [node.data_size() for node in [node1, node2, node3]]

        assert_almost_equal(sizes[0], sizes[1], error=0.05)
        assert_almost_equal(sizes[0], sizes[2], error=0.05)
        assert_almost_equal(sizes[1], sizes[2], error=0.05)
コード例 #13
0
    def test_movement(self):
        cluster = self.cluster

        # Create an unbalanced ring
        cluster.populate(3, tokens=[0, 2**48, 2**62]).start()
        node1, node2, node3 = cluster.nodelist()

        session = self.patient_cql_connection(node1)
        create_ks(session, 'ks', 1)
        create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        insert_c1c2(session, n=30000, consistency=ConsistencyLevel.ONE)

        cluster.flush()

        # Move nodes to balance the cluster
        def move_node(node, token):
            mark = node.mark_log()
            node.move(token)  # can't assume 0 is balanced with m3p
            node.watch_log_for('{} state jump to NORMAL'.format(
                node.address_for_current_version()),
                               from_mark=mark,
                               timeout=180)
            time.sleep(3)

        balancing_tokens = cluster.balanced_tokens(3)

        move_node(node1, balancing_tokens[0])
        move_node(node2, balancing_tokens[1])
        move_node(node3, balancing_tokens[2])

        time.sleep(1)

        cluster.cleanup()

        # Check we can get all the keys
        for n in range(0, 30000):
            query_c1c2(session, n, ConsistencyLevel.ONE)

        # Now the load should be basically even
        sizes = [node.data_size() for node in [node1, node2, node3]]

        assert_almost_equal(sizes[0], sizes[1])
        assert_almost_equal(sizes[0], sizes[2])
        assert_almost_equal(sizes[1], sizes[2])
コード例 #14
0
    def test_movement(self):
        cluster = self.cluster

        # Create an unbalanced ring
        cluster.populate(3, tokens=[0, 2**48, 2**62]).start()
        node1, node2, node3 = cluster.nodelist()

        session = self.patient_cql_connection(node1)
        create_ks(session, 'ks', 1)
        create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        insert_c1c2(session, n=30000, consistency=ConsistencyLevel.ONE)

        cluster.flush()

        # Move nodes to balance the cluster
        def move_node(node, token):
            mark = node.mark_log()
            node.move(token)  # can't assume 0 is balanced with m3p
            node.watch_log_for('{} state jump to NORMAL'.format(node.address_for_current_version()), from_mark=mark, timeout=180)
            time.sleep(3)

        balancing_tokens = cluster.balanced_tokens(3)

        move_node(node1, balancing_tokens[0])
        move_node(node2, balancing_tokens[1])
        move_node(node3, balancing_tokens[2])

        time.sleep(1)

        cluster.cleanup()

        # Check we can get all the keys
        for n in range(0, 30000):
            query_c1c2(session, n, ConsistencyLevel.ONE)

        # Now the load should be basically even
        sizes = [node.data_size() for node in [node1, node2, node3]]

        assert_almost_equal(sizes[0], sizes[1])
        assert_almost_equal(sizes[0], sizes[2])
        assert_almost_equal(sizes[1], sizes[2])
コード例 #15
0
    def test_multiple_subsequent_repair(self):
        """
        @jira_ticket CASSANDRA-8366

        There is an issue with subsequent inc repairs increasing load size.
        So we perform several repairs and check that the expected amount of data exists.
        * Launch a three node cluster
        * Write 5M rows with stress
        * Wait for minor compactions to finish
        * Issue an incremental repair on each node, sequentially
        * Issue major compactions on each node
        * Sleep for a while so load size can be propagated between nodes
        * Verify the correct amount of data is on each node
        """
        cluster = self.cluster
        cluster.populate(3).start()
        node1, node2, node3 = cluster.nodelist()

        logger.debug("Inserting data with stress")
        node1.stress([
            'write', 'n=5M', 'no-warmup', '-rate', 'threads=10', '-schema',
            'replication(factor=3)'
        ])

        logger.debug("Flushing nodes")
        cluster.flush()

        logger.debug("Waiting compactions to finish")
        cluster.wait_for_compactions()

        if self.cluster.version() >= '2.2':
            logger.debug("Repairing node1")
            node1.nodetool("repair")
            logger.debug("Repairing node2")
            node2.nodetool("repair")
            logger.debug("Repairing node3")
            node3.nodetool("repair")
        else:
            logger.debug("Repairing node1")
            node1.nodetool("repair -par -inc")
            logger.debug("Repairing node2")
            node2.nodetool("repair -par -inc")
            logger.debug("Repairing node3")
            node3.nodetool("repair -par -inc")

        # Using "print" instead of logger.debug() here is on purpose.  The compactions
        # take a long time and don't print anything by default, which can result
        # in the test being timed out after 20 minutes.  These print statements
        # prevent it from being timed out.
        print("compacting node1")
        node1.compact()
        print("compacting node2")
        node2.compact()
        print("compacting node3")
        node3.compact()

        # wait some time to be sure the load size is propagated between nodes
        logger.debug(
            "Waiting for load size info to be propagated between nodes")
        time.sleep(45)

        load_size_in_kb = float(
            sum([n.data_size() for n in [node1, node2, node3]]))
        load_size = load_size_in_kb / 1024 / 1024
        logger.debug("Total Load size: {}GB".format(load_size))

        # There is still some overhead, but it's lot better. We tolerate 25%.
        expected_load_size = 4.5  # In GB
        assert_almost_equal(load_size, expected_load_size, error=0.25)
コード例 #16
0
 def test_almost_equal_expect_pass(self):
     assert_almost_equal(1, 1.1, 1.3, error=.31)
コード例 #17
0
 def test_almost_equal_expect_failure(self):
     with pytest.raises(AssertionError):
         assert_almost_equal(1, 1.3, error=.1)
コード例 #18
0
 def test_almost_equal_expect_pass(self):
     assert_almost_equal(1, 1.1, 1.3, error=.31)
コード例 #19
0
    def _base_bootstrap_test(self,
                             bootstrap=None,
                             bootstrap_from_version=None,
                             enable_ssl=None):
        def default_bootstrap(cluster, token):
            node2 = new_node(cluster)
            node2.set_configuration_options(values={'initial_token': token})
            node2.start(wait_for_binary_proto=True)
            return node2

        if bootstrap is None:
            bootstrap = default_bootstrap

        cluster = self.cluster

        if enable_ssl:
            logger.debug("***using internode ssl***")
            generate_ssl_stores(self.fixture_dtest_setup.test_path)
            cluster.enable_internode_ssl(self.fixture_dtest_setup.test_path)

        tokens = cluster.balanced_tokens(2)
        cluster.set_configuration_options(values={'num_tokens': 1})

        logger.debug("[node1, node2] tokens: %r" % (tokens, ))

        keys = 10000

        # Create a single node cluster
        cluster.populate(1)
        node1 = cluster.nodelist()[0]
        if bootstrap_from_version:
            logger.debug("starting source node on version {}".format(
                bootstrap_from_version))
            node1.set_install_dir(version=bootstrap_from_version)
        node1.set_configuration_options(values={'initial_token': tokens[0]})
        cluster.start(wait_other_notice=True)

        session = self.patient_cql_connection(node1)
        create_ks(session, 'ks', 1)
        create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        # record the size before inserting any of our own data
        empty_size = data_size(node1, 'ks', 'cf')
        logger.debug("node1 empty size for ks.cf: %s" % float(empty_size))

        insert_statement = session.prepare(
            "INSERT INTO ks.cf (key, c1, c2) VALUES (?, 'value1', 'value2')")
        execute_concurrent_with_args(session, insert_statement,
                                     [['k%d' % k] for k in range(keys)])

        node1.flush()
        node1.compact()
        initial_size = data_size(node1, 'ks', 'cf')
        logger.debug("node1 size for ks.cf before bootstrapping node2: %s" %
                     float(initial_size))

        # Reads inserted data all during the bootstrap process. We shouldn't
        # get any error
        query_c1c2(session, random.randint(0, keys - 1), ConsistencyLevel.ONE)
        session.shutdown()

        # Bootstrapping a new node in the current version
        node2 = bootstrap(cluster, tokens[1])
        node2.compact()

        node1.cleanup()
        logger.debug("node1 size for ks.cf after cleanup: %s" %
                     float(data_size(node1, 'ks', 'cf')))
        node1.compact()
        logger.debug("node1 size for ks.cf after compacting: %s" %
                     float(data_size(node1, 'ks', 'cf')))

        logger.debug("node2 size for ks.cf after compacting: %s" %
                     float(data_size(node2, 'ks', 'cf')))

        size1 = float(data_size(node1, 'ks', 'cf'))
        size2 = float(data_size(node2, 'ks', 'cf'))
        assert_almost_equal(size1, size2, error=0.3)
        assert_almost_equal(float(initial_size - empty_size),
                            2 * (size1 - float(empty_size)))

        assert_bootstrap_state(self, node2, 'COMPLETED')
コード例 #20
0
    def _base_bootstrap_test(self,
                             bootstrap=None,
                             bootstrap_from_version=None):
        def default_bootstrap(cluster, token):
            node2 = new_node(cluster)
            node2.set_configuration_options(values={'initial_token': token})
            node2.start(wait_for_binary_proto=True)
            return node2

        if bootstrap is None:
            bootstrap = default_bootstrap

        cluster = self.cluster
        tokens = cluster.balanced_tokens(2)
        cluster.set_configuration_options(values={'num_tokens': 1})

        debug("[node1, node2] tokens: %r" % (tokens, ))

        keys = 10000

        # Create a single node cluster
        cluster.populate(1)
        node1 = cluster.nodelist()[0]
        if bootstrap_from_version:
            debug("starting source node on version {}".format(
                bootstrap_from_version))
            node1.set_install_dir(version=bootstrap_from_version)
        node1.set_configuration_options(values={'initial_token': tokens[0]})
        cluster.start(wait_other_notice=True)

        session = self.patient_cql_connection(node1)
        self.create_ks(session, 'ks', 1)
        self.create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        # record the size before inserting any of our own data
        empty_size = node1.data_size()
        debug("node1 empty size : %s" % float(empty_size))

        insert_statement = session.prepare(
            "INSERT INTO ks.cf (key, c1, c2) VALUES (?, 'value1', 'value2')")
        execute_concurrent_with_args(session, insert_statement,
                                     [['k%d' % k] for k in range(keys)])

        node1.flush()
        node1.compact()
        initial_size = node1.data_size()
        debug("node1 size before bootstrapping node2: %s" %
              float(initial_size))

        # Reads inserted data all during the bootstrap process. We shouldn't
        # get any error
        reader = self.go(lambda _: query_c1c2(
            session, random.randint(0, keys - 1), ConsistencyLevel.ONE))

        # Bootstrapping a new node in the current version
        node2 = bootstrap(cluster, tokens[1])
        node2.compact()

        reader.check()
        node1.cleanup()
        debug("node1 size after cleanup: %s" % float(node1.data_size()))
        node1.compact()
        debug("node1 size after compacting: %s" % float(node1.data_size()))
        time.sleep(.5)
        reader.check()

        debug("node2 size after compacting: %s" % float(node2.data_size()))

        size1 = float(node1.data_size())
        size2 = float(node2.data_size())
        assert_almost_equal(size1, size2, error=0.3)
        assert_almost_equal(float(initial_size - empty_size),
                            2 * (size1 - float(empty_size)))

        assert_bootstrap_state(self, node2, 'COMPLETED')
        if bootstrap_from_version:
            self.assertTrue(
                node2.grep_log('does not support keep-alive',
                               filename='debug.log'))
コード例 #21
0
 def test_almost_equal_expect_failure(self):
     with self.assertRaises(AssertionError):
         assert_almost_equal(1, 1.3, error=.1)
コード例 #22
0
    def _base_bootstrap_test(self, bootstrap=None, bootstrap_from_version=None,
                             enable_ssl=None):
        def default_bootstrap(cluster, token):
            node2 = new_node(cluster)
            node2.set_configuration_options(values={'initial_token': token})
            node2.start(wait_for_binary_proto=True)
            return node2

        if bootstrap is None:
            bootstrap = default_bootstrap

        cluster = self.cluster

        if enable_ssl:
            logger.debug("***using internode ssl***")
            generate_ssl_stores(self.fixture_dtest_setup.test_path)
            cluster.enable_internode_ssl(self.fixture_dtest_setup.test_path)

        tokens = cluster.balanced_tokens(2)
        cluster.set_configuration_options(values={'num_tokens': 1})

        logger.debug("[node1, node2] tokens: %r" % (tokens,))

        keys = 10000

        # Create a single node cluster
        cluster.populate(1)
        node1 = cluster.nodelist()[0]
        if bootstrap_from_version:
            logger.debug("starting source node on version {}".format(bootstrap_from_version))
            node1.set_install_dir(version=bootstrap_from_version)
        node1.set_configuration_options(values={'initial_token': tokens[0]})
        cluster.start(wait_other_notice=True)

        session = self.patient_cql_connection(node1)
        create_ks(session, 'ks', 1)
        create_cf(session, 'cf', columns={'c1': 'text', 'c2': 'text'})

        # record the size before inserting any of our own data
        empty_size = node1.data_size()
        logger.debug("node1 empty size : %s" % float(empty_size))

        insert_statement = session.prepare("INSERT INTO ks.cf (key, c1, c2) VALUES (?, 'value1', 'value2')")
        execute_concurrent_with_args(session, insert_statement, [['k%d' % k] for k in range(keys)])

        node1.flush()
        node1.compact()
        initial_size = node1.data_size()
        logger.debug("node1 size before bootstrapping node2: %s" % float(initial_size))

        # Reads inserted data all during the bootstrap process. We shouldn't
        # get any error
        query_c1c2(session, random.randint(0, keys - 1), ConsistencyLevel.ONE)
        session.shutdown()

        # Bootstrapping a new node in the current version
        node2 = bootstrap(cluster, tokens[1])
        node2.compact()

        node1.cleanup()
        logger.debug("node1 size after cleanup: %s" % float(node1.data_size()))
        node1.compact()
        logger.debug("node1 size after compacting: %s" % float(node1.data_size()))

        logger.debug("node2 size after compacting: %s" % float(node2.data_size()))

        size1 = float(node1.data_size())
        size2 = float(node2.data_size())
        assert_almost_equal(size1, size2, error=0.3)
        assert_almost_equal(float(initial_size - empty_size), 2 * (size1 - float(empty_size)))

        assert_bootstrap_state(self, node2, 'COMPLETED')
コード例 #23
0
    def multiple_subsequent_repair_test(self):
        """
        @jira_ticket CASSANDRA-8366

        There is an issue with subsequent inc repairs increasing load size.
        So we perform several repairs and check that the expected amount of data exists.
        * Launch a three node cluster
        * Write 5M rows with stress
        * Wait for minor compactions to finish
        * Issue an incremental repair on each node, sequentially
        * Issue major compactions on each node
        * Sleep for a while so load size can be propagated between nodes
        * Verify the correct amount of data is on each node
        """
        cluster = self.cluster
        cluster.populate(3).start()
        node1, node2, node3 = cluster.nodelist()

        debug("Inserting data with stress")
        node1.stress(['write', 'n=5M', 'no-warmup', '-rate', 'threads=10', '-schema', 'replication(factor=3)'])

        debug("Flushing nodes")
        cluster.flush()

        debug("Waiting compactions to finish")
        cluster.wait_for_compactions()

        if self.cluster.version() >= '2.2':
            debug("Repairing node1")
            node1.nodetool("repair")
            debug("Repairing node2")
            node2.nodetool("repair")
            debug("Repairing node3")
            node3.nodetool("repair")
        else:
            debug("Repairing node1")
            node1.nodetool("repair -par -inc")
            debug("Repairing node2")
            node2.nodetool("repair -par -inc")
            debug("Repairing node3")
            node3.nodetool("repair -par -inc")

        # Using "print" instead of debug() here is on purpose.  The compactions
        # take a long time and don't print anything by default, which can result
        # in the test being timed out after 20 minutes.  These print statements
        # prevent it from being timed out.
        print "compacting node1"
        node1.compact()
        print "compacting node2"
        node2.compact()
        print "compacting node3"
        node3.compact()

        # wait some time to be sure the load size is propagated between nodes
        debug("Waiting for load size info to be propagated between nodes")
        time.sleep(45)

        load_size_in_kb = float(sum(map(lambda n: n.data_size(), [node1, node2, node3])))
        load_size = load_size_in_kb / 1024 / 1024
        debug("Total Load size: {}GB".format(load_size))

        # There is still some overhead, but it's lot better. We tolerate 25%.
        expected_load_size = 4.5  # In GB
        assert_almost_equal(load_size, expected_load_size, error=0.25)