コード例 #1
0
ファイル: predict.py プロジェクト: zhang703652632/EasyBert
def main(text):
    args = Config()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    id2label = {i: label for i, label in enumerate(label_list)}
    # label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = BertConfig, BertCrfForNer, CNerTokenizer
    config = config_class.from_pretrained(args.model_name_or_path,
                                          num_labels=num_labels,
                                          cache_dir=None)

    if args.do_predict:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        for checkpoint in checkpoints:
            model = model_class.from_pretrained(checkpoint, config=config)
            model.to(device)
            result = predict(args, text, id2label, model, tokenizer)
            for i in result:
                print(i)
コード例 #2
0
def run(args):

    seed_everything(args.seed)
    if args.do_train == 1:

        # print('划分训练数据和验证数据')
        # split_data(args=args, file_name_or_path=args.file_name_or_path)

        print('加载训练数据和验证数据')
        train_data, train_dataloader = load_dataset(
            args=args,
            model_name_or_path=args.model_name_or_path,
            type='train')
        valid_data, valid_dataloader = load_dataset(
            args=args,
            model_name_or_path=args.model_name_or_path,
            type='valid')
        print('训练数据和验证数据加载完成')

        print('开始训练')
        train(args=args,
              model_name_or_path=args.model_name_or_path,
              train_data=train_data,
              train_dataloader=train_dataloader,
              valid_data=valid_data,
              valid_dataloader=valid_dataloader)
        print('训练结束')

    if args.do_predict == 1:

        print('加载测试数据')
        pre_data, predict_dataloader = load_dataset(
            args=args, model_name_or_path=args.model_name_or_path, type='test')
        print('测试数据加载完成')

        print('开始预测')
        preds, predict_label = predict(
            predict_model_name_or_path=args.predict_model_name_or_path,
            pre_data=pre_data,
            pre_dataloader=predict_dataloader)
        print('预测完成')

        print('形成输出结果形式')
        target_names = ['非涉网案件', '涉网案件']
        outputlines = get_output(preds=preds,
                                 predict_label=predict_label,
                                 pre_data=pre_data,
                                 target_names=target_names)

        print('进行规则筛选')
        relu = net_relus()
        predict_result = relu.net_relus(
            nonet_keyword_list=config['nonet_keyword_list'],
            predict_result=outputlines)

        print('将预测结果写入文件')
        # predict_result = outputlines
        write_pre_result_to_file(args=args, output_lines=predict_result)
        print('预测结果写入完成')
コード例 #3
0
def run(args):
    seed_everything(args.seed)

    if args.do_train == 1:

        logger.info('划分训练数据和验证数据')
        split_data(args=args, file_name_or_path=args.file_name_or_path)

        logger.info('加载训练数据和验证数据')
        train_data, train_dataloader = load_dataset(
            args=args,
            model_name_or_path=args.model_name_or_path,
            type='train')
        valid_data, valid_dataloader = load_dataset(
            args=args,
            model_name_or_path=args.model_name_or_path,
            type='valid')
        logger.info('训练数据和验证数据加载完成')

        logger.info('开始训练')
        train(args=args,
              model_name_or_path=args.model_name_or_path,
              train_data=train_data,
              train_dataloader=train_dataloader,
              valid_data=valid_data,
              valid_dataloader=valid_dataloader)
        logger.info('训练结束')

    if args.do_predict == 1:

        logger.info('加载测试数据')
        pre_data, predict_dataloader = load_dataset(
            args=args, model_name_or_path=args.model_name_or_path, type='test')
        logger.info('测试数据加载完成')

        logger.info('开始预测')
        preds, predict_label = predict(
            predict_model_name_or_path=args.predict_model_name_or_path,
            pre_data=pre_data,
            pre_dataloader=predict_dataloader)
        logger.info('预测完成')

        logger.info('将预测结果写入文件')
        write_pre_result_to_file(args=args,
                                 preds=preds,
                                 predict_label=predict_label,
                                 pre_data=pre_data)
        logger.info('预测结果写入完成')
コード例 #4
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument("--do_data", default=True, action='store_true')
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument('--max_ngram', default=3, type=int)
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    # parser.add_argument("--file_num", type=int, default=10,                        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument(
        "--short_seq_prob",
        type=float,
        default=0.1,
        help="Probability of making a short sentence as a training example")
    parser.add_argument(
        "--masked_lm_prob",
        type=float,
        default=0.15,
        help="Probability of masking each token for the LM task")
    # 128 * 0.15
    parser.add_argument(
        "--max_predictions_per_seq",
        type=int,
        default=20,
        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)
    from configs.base import config
    args.vocab_path = config['albert_vocab_path']
    args.data_dir = config['data_dir']
    logger.info("pregenerate training data parameters:\n %s", args)
    tokenizer = BertTokenizer(vocab_file=args.vocab_path,
                              do_lower_case=args.do_lower_case)

    small_path = config['data_dir'] / "corpus/small"
    files = sorted(
        [f for f in small_path.iterdir() if f.exists() and '.txt' in str(f)])

    file_path = files[0].absolute()
    max_seq_len = args.max_seq_len
    train(file_path, tokenizer, max_seq_len)
    print("  dataloader ok! ")
    sys.exit(0)
コード例 #5
0
def main():

    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        help=
        "The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written.",
    )

    # Other parameters
    parser.add_argument('--markup',
                        default='bios',
                        type=str,
                        choices=['bios', 'bio'])
    parser.add_argument(
        "--labels",
        default="",
        type=str,
        help=
        "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
    )
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--train_max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument(
        "--eval_max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train",
                        default=None,
                        type=bool,
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=None,
                        type=bool,
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        default=None,
                        type=bool,
                        help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action="store_true",
        help="Whether to run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case",
        default=None,
        type=bool,
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )

    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )
    parser.add_argument("--logging_steps",
                        type=int,
                        default=50,
                        help="Log every X updates steps.")
    parser.add_argument("--save_steps",
                        type=int,
                        default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument(
        '--predict_all_checkpoints',
        action="store_true",
        help=
        "Predict all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir",
        default=None,
        type=bool,
        help="Overwrite the content of the output directory 将输出目录覆写")
    parser.add_argument(
        "--overwrite_cache",
        action="store_true",
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument("--seed",
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument("--fp16_opt_level",type=str,default="O1",\
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html",)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument("--server_ip",
                        type=str,
                        default="",
                        help="For distant debugging.")
    parser.add_argument("--server_port",
                        type=str,
                        default="",
                        help="For distant debugging.")
    args = parser.parse_args()

    # 参数修改
    # 主要必须修改labels, 位置在processors文件夹ner_seq文件中
    args.task_name = 'cner'
    args.model_type = 'bert'
    args.model_name_or_path = '/root/models/chinese/bert/pytorch/bert-base-chinese'
    args.do_train = True
    args.do_eval = True
    args.do_predict = True
    args.do_lower_case = True
    args.data_dir = '/root/A/违法主体识别/train_data'
    args.train_max_seq_length = 150
    args.eval_max_seq_length = 150
    args.per_gpu_train_batch_size = 4
    args.per_gpu_eval_batch_size = 4
    args.learning_rate = 2e-5
    args.num_train_epochs = 5.0
    args.logging_steps = 300
    args.saving_steps = 600
    args.output_dir = './outputs'
    args.overwrite_output_dir = True
    args.seed = 42

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = os.path.join(args.output_dir, args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir + '/{}-{}-{}.log'.format(
        args.model_type, args.task_name,
        time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )

    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
        label2id=args.label2id,
        device=args.device)

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    tokenizer = tokenizer_class.from_pretrained(
        args.output_dir, do_lower_case=args.do_lower_case)
    checkpoint = args.output_dir

    logger.info("Predict the following checkpoints: %s", checkpoint)
    model = model_class.from_pretrained(checkpoint,
                                        config=config,
                                        label2id=args.label2id,
                                        device=args.device)
    model.to(args.device)

    global _args, _model, _tokenizer
    _args, _model, _tokenizer = args, model, tokenizer
コード例 #6
0
ファイル: train.py プロジェクト: xxxyyy2020/boundary-master
def train(args, train_features, model, tokenizer, use_crf):
    """ Train the model """
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    bert_param_optimizer = list(model.bert.named_parameters())

    if args.model_encdec == 'bert2crf':
        crf_param_optimizer = list(model.crf.named_parameters())
        linear_param_optimizer = list(model.classifier.named_parameters())
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in bert_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in bert_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in crf_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.crf_learning_rate
        }, {
            'params': [
                p for n, p in crf_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.crf_learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.crf_learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.crf_learning_rate
        }]

    elif args.model_encdec == 'bert2gru':
        gru_param_optimizer = list(model.decoder.named_parameters())
        linear_param_optimizer = list(model.clsdense.named_parameters())
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in bert_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in bert_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in gru_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.crf_learning_rate
        }, {
            'params': [
                p for n, p in gru_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.crf_learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.crf_learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.crf_learning_rate
        }]

    elif args.model_encdec == 'bert2soft':
        linear_param_optimizer = list(model.classifier.named_parameters())
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in bert_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in bert_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.crf_learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.crf_learning_rate
        }]

    elif args.model_encdec == 'multi2point':
        # gru_param_optimizer = list(model.decoder.named_parameters())
        linear_param_optimizer = list(model.pointer.named_parameters())
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in bert_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in bert_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            args.weight_decay,
            'lr':
            args.point_learning_rate
        }, {
            'params': [
                p for n, p in linear_param_optimizer
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0,
            'lr':
            args.point_learning_rate
        }]

    t_total = len(train_features) // args.batch_size * args.num_train_epochs
    args.warmup_steps = int(t_total * args.warmup_proportion)

    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))

    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_features))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.batch_size *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    # logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    pre_result = {}
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    total_step = 0
    best_spanf = -1

    test_results = {}
    for ep in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_features) // args.batch_size,
                           desc='Training')
        if ep == int(args.num_train_epochs) - 1:
            eval_features = load_and_cache_examples(args,
                                                    args.data_type,
                                                    tokenizer,
                                                    data_type='dev')
            train_features.extend(eval_features)

        step = 0
        for batch in batch_generator(features=train_features,
                                     batch_size=args.batch_size,
                                     use_crf=use_crf,
                                     answer_seq_len=args.answer_seq_len):
            batch_input_ids, batch_input_mask, batch_segment_ids, batch_label_ids, batch_multi_span_label, batch_context_mask, batch_start_position, batch_end_position, batch_raw_labels, _, batch_example = batch
            model.train()
            if args.model_encdec == 'bert2crf' or args.model_encdec == 'bert2gru' or args.model_encdec == 'bert2soft':
                batch_inputs = tuple(t.to(args.device) for t in batch[0:6])
                inputs = {
                    "input_ids": batch_inputs[0],
                    "attention_mask": batch_inputs[1],
                    "token_type_ids": batch_inputs[2],
                    "context_mask": batch_inputs[5],
                    "labels": batch_inputs[3],
                    "testing": False
                }

            elif args.model_encdec == 'multi2point':
                batch_inputs = tuple(t.to(args.device) for t in batch[0:5])
                inputs = {
                    "input_ids": batch_inputs[0],
                    "attention_mask": batch_inputs[1],
                    "token_type_ids": batch_inputs[2],
                    "span_label": batch_inputs[4],
                    "testing": False
                }

            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            loss.backward()
            if step % 15 == 0:
                pbar(step, {'epoch': ep, 'loss': loss.item()})
            step += 1
            tr_loss += loss.item()

            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           args.max_grad_norm)
            scheduler.step()  # Update learning rate schedule
            optimizer.step()
            model.zero_grad()
            global_step += 1
            if args.local_rank in [
                    -1, 0
            ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                # Log metrics
                print("start evalue")
                if args.local_rank == -1:
                    # Only evaluate when single GPU otherwise metrics may not average well
                    results = evaluate(args=args,
                                       model=model,
                                       tokenizer=tokenizer,
                                       prefix="dev",
                                       use_crf=use_crf)
                    span_f = results['span_f']
                    if span_f > best_spanf:
                        output_dir = os.path.join(args.output_dir,
                                                  "checkpoint-bestf")
                        if os.path.exists(output_dir):
                            shutil.rmtree(output_dir)
                            print('remove file', args.output_dir)
                        print('\n\n eval results:', results)
                        test_results = evaluate(args=args,
                                                model=model,
                                                tokenizer=tokenizer,
                                                prefix="test",
                                                use_crf=use_crf)
                        print('\n\n test results', test_results)
                        print('\n epoch = :', ep)

                        best_spanf = span_f
                        os.makedirs(output_dir)
                        # print('dir = ', output_dir)
                        model_to_save = (
                            model.module if hasattr(model, "module") else model
                        )  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(output_dir)
                        torch.save(
                            args, os.path.join(output_dir,
                                               "training_args.bin"))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)
                        tokenizer.save_vocabulary(output_dir)
                        torch.save(optimizer.state_dict(),
                                   os.path.join(output_dir, "optimizer.pt"))
                        torch.save(scheduler.state_dict(),
                                   os.path.join(output_dir, "scheduler.pt"))
                        logger.info(
                            "Saving optimizer and scheduler states to %s",
                            output_dir)

        np.random.seed()
        np.random.shuffle(train_features)
        logger.info("\n")
        # if 'cuda' in str(args.device):
        torch.cuda.empty_cache()
    return global_step, tr_loss / global_step, test_results
コード例 #7
0
ファイル: train.py プロジェクト: xxxyyy2020/boundary-master
def train_model():
    metrics = {}
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    args.n_gpu = 1
    if args.model_encdec == 'bert2gru' or args.model_encdec == 'bert2soft' or args.model_encdec == 'multi2point':
        use_crf = False
    elif args.model_encdec == 'bert2crf':
        use_crf = True
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
    )
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.data_type = args.data_type.lower()
    if args.data_type not in processors:
        raise ValueError("Task not found: %s" % (args.data_type))
    processor = processors[args.data_type]()
    label_list = processor.get_labels()  #这里是获取的标签列表,本任务:【B I O】
    args.id2label = {i: label
                     for i, label in enumerate(label_list)
                     }  #获取的是字典{0: O, 1: B, 2: I}
    args.label2id = {label: i
                     for i, label in enumerate(label_list)
                     }  #获取的是字典{O:0, B:1, I: 2}
    num_labels = len(label_list)  # 标签的个数

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[
        args.model_type]  #BertConfig, BertCrfForNer, EcaTokenizer

    #BertConfig.from_pretrained
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None)  #模型

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    train_features = load_and_cache_examples(args,
                                             args.data_type,
                                             tokenizer,
                                             data_type='train')
    global_step, tr_loss, metrics = train(args,
                                          train_features,
                                          model,
                                          tokenizer,
                                          use_crf=use_crf)
    logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    return metrics
コード例 #8
0
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--model_type",
                        default=None,
                        type=str,
                        required=True,
                        help="Model type selected in the list: " +
                        ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(ALL_MODELS))
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_predict",
        action='store_true',
        help="Whether to run the model in inference mode on the test set.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=1e-6,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs."
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument('--logging_steps',
                        type=int,
                        default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=1000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        default=False,
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    args = parser.parse_args()

    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
        print("args.n_gpu=", args.n_gpu)
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    print("运算设备:", args.device)

    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1))

    seed_everything(args.seed)

    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)

    if args.local_rank == 0:
        torch.distributed.barrier()

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):

        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)

        model_to_save = model.module if hasattr(model, 'module') else model
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        model = model_class.from_pretrained(args.output_dir)
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(
                args,
                model,
                tokenizer,
                prefix=prefix,
            )
            result = dict(
                (k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("%s = %s\n" % (key, str(results[key])))

    # Predict
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]

        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            predict(args, model, tokenizer, prefix=prefix)
コード例 #9
0
def train(args, model_name_or_path, train_data, train_dataloader, valid_data,
          valid_dataloader):

    pro = processer()
    labellist = pro.get_labels()
    trainloss = TrainLoss()

    #*****加载模型*****
    model = BertForSequenceClassification
    config = BertConfig.from_pretrained(model_name_or_path,
                                        num_labels=len(labellist))
    model = model.from_pretrained(model_name_or_path, config=config)

    # *****模型加载到设备*****
    if torch.cuda.is_available():
        # 单GPU计算
        torch.cuda.set_device(0)
        device = torch.device('cuda', 0)  # 设置GPU设备号
    else:
        device = torch.device('cpu')
    model.to(device)

    #*****优化函数*****
    t_total = len(train_dataloader
                  ) // args.gradient_accumulation_steps * args.num_train_epochs
    warmup_steps = int(t_total * args.warmup_proportion)

    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer,
                                     warmup_steps=warmup_steps,
                                     t_total=t_total)

    #*****训练过程相关信息*****
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_data))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.train_batch_size)
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    #*****开始训练*****
    tr_loss, logging_loss = 0.0, 0.0

    model.zero_grad()
    seed_everything(args.seed)

    for num in range(args.num_train_epochs):
        train_all_steps = 0
        train_steps = []
        train_losses = []

        global_step = 0
        logger.info(f'****************Train epoch-{num}****************')
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Train')
        for step, batch in enumerate(train_dataloader):
            #***存储step用于绘制Loss曲线***
            train_all_steps += 1
            train_steps.append(train_all_steps)

            model.train()

            #***输入模型进行计算***
            batch = tuple(t.to(device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'token_type_ids': batch[2],
                'labels': batch[3]
            }
            outputs = model(
                **inputs)  #模型原文件中已经使用损失函数对输出值和标签值进行了计算,返回的outputs中包含损失函数值

            #***损失函数值反向传播***
            loss = outputs[0]
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           args.max_grad_norm)  #梯度裁剪

            #***存储loss用于绘制loss曲线***
            train_losses.append(loss.detach().cpu().numpy())

            #***优化器进行优化***
            pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()  #优化器优化
                scheduler.step()  #学习率机制更新
                model.zero_grad()
                global_step += 1

        #训练一个epoch保存一个模型
        output_dir = os.path.join(args.output_dir,
                                  f'model_checkpoint_epoch_{num}')
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        print('')  #避免输出信息都在同一行
        # logger.info(f'save model checkpoint-{global_step} to {output_dir} ')
        model.save_pretrained(output_dir)  #保存模型

        #***训练一个epoch绘制一个Loss曲线***
        trainloss.train_loss(steps=train_steps,
                             losses=train_losses,
                             epoch=num,
                             args=args,
                             type='train',
                             max_step=train_all_steps)

        #*****一个epoch训练结束以后,进行验证*****
        print('')
        logger.info(f'****************Valid epoch-{num}****************')
        logger.info("  Num examples = %d", len(valid_data))
        logger.info("  Batch size = %d", args.valid_batch_size)
        valid_steps, valid_losses, valid_all_steps = valid(
            args=args,
            model=model,
            device=device,
            valid_data=valid_data,
            valid_dataloader=valid_dataloader)
        trainloss.train_loss(steps=valid_steps,
                             losses=valid_losses,
                             epoch=num,
                             args=args,
                             type='valid',
                             max_steps=valid_all_steps)

        #每训练一个epoch清空cuda缓存
        if 'cuda' in str(device):
            torch.cuda.empty_cache()
コード例 #10
0
def main():
    args = deal_parser()
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    # Setup logging
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    config = BertConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    # albert model
    # tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case,spm_model_file=args.spm_model_file)
    # model = AlbertForSequenceClassification.from_pretrained(args.model_name_or_path,from_tf=bool('.ckpt' in args.model_name_or_path),config=config)
    # bert model
    tokenizer = tokenization_bert.BertTokenizer(
        vocab_file=args.vocab_file,
        do_lower_case=args.do_lower_case,
        spm_model_file=args.spm_model_file)
    model = BertForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        # albert model
        #tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,do_lower_case=args.do_lower_case,spm_model_file=args.spm_model_file)
        # bert model
        tokenizer = tokenization_bert.BertTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
            spm_model_file=args.spm_model_file)
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            # albert model
            # model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            # bert model
            model = BertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))
    # Test
    results = []
    if args.do_predict and args.local_rank in [-1, 0]:
        # albert model
        # tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,do_lower_case=args.do_lower_case,spm_model_file=args.spm_model_file)
        # bert model
        tokenizer = tokenization_bert.BertTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
            spm_model_file=args.spm_model_file)
        checkpoints = [(0, args.output_dir)]
        if args.predict_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Test the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            # albert model
            # model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            # bert model
            model = BertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = test(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_test_file = os.path.join(args.output_dir,
                                        "checkpoint_test_results.txt")
        with open(output_test_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))
コード例 #11
0
def train(args, train_dataset, model, tokenizer, config):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    bert_param_optimizer = list(model.bert.named_parameters())
    crf_param_optimizer = list(model.crf.named_parameters())
    linear_param_optimizer = list(model.classifier.named_parameters())
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in bert_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.learning_rate
    }, {
        'params': [
            p for n, p in bert_param_optimizer
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0,
        'lr':
        args.learning_rate
    }, {
        'params': [
            p for n, p in crf_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.crf_learning_rate
    }, {
        'params':
        [p for n, p in crf_param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0,
        'lr':
        args.crf_learning_rate
    }, {
        'params': [
            p for n, p in linear_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.crf_learning_rate
    }, {
        'params': [
            p for n, p in linear_param_optimizer
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0,
        'lr':
        args.crf_learning_rate
    }]
    args.warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path
                      ) and "checkpoint" in args.model_name_or_path:
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)
        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    # train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])

    best_eval_p = 0.0
    best_eval_r = 0.0
    best_eval_f1 = 0.0

    for _ in range(int(args.num_train_epochs)):
        # pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)

            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            # pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1
                # if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                #     # Log metrics
                #     print(" ")
                #     if args.local_rank == -1:
                #         # Only evaluate when single GPU otherwise metrics may not average well
                #         evaluate(args, model, tokenizer)
                # if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                #     # Save model checkpoint
                #     output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                #     if not os.path.exists(output_dir):
                #         os.makedirs(output_dir)
                #     model_to_save = (
                #         model.module if hasattr(model, "module") else model
                #     )  # Take care of distributed/parallel training
                #     model_to_save.save_pretrained(output_dir)
                #     torch.save(args, os.path.join(output_dir, "training_args.bin"))
                #     logger.info("Saving model checkpoint to %s", output_dir)
                #     tokenizer.save_vocabulary(output_dir)
                #     torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                #     torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                #     logger.info("Saving optimizer and scheduler states to %s", output_dir)

        # best eval
        results = evaluate(args, model, tokenizer)
        if results["f1"] > best_eval_f1:
            best_eval_p = results['acc']
            best_eval_r = results['recall']
            best_eval_f1 = results["f1"]

            ## 保存最好模型
            args.best_eval_output_dir = os.path.join(args.output_dir)
            if not os.path.exists(args.best_eval_output_dir):
                os.makedirs(args.best_eval_output_dir)
            model_to_save = (
                model.module if hasattr(model, "module") else model
            )  # Take care of distributed/parallel training
            model_to_save.save_pretrained(args.best_eval_output_dir)
            torch.save(
                args,
                os.path.join(args.best_eval_output_dir, "training_args.bin"))
            logger.info("eval results: p:{:.4f} r:{:.4f} f1:{:.4f}".format(
                best_eval_p, best_eval_r, best_eval_f1))
            logger.info("Saving step:{} as best model to {}".format(
                global_step, args.best_eval_output_dir))
            tokenizer.save_vocabulary(args.best_eval_output_dir)
            torch.save(optimizer.state_dict(),
                       os.path.join(args.best_eval_output_dir, "optimizer.pt"))
            torch.save(scheduler.state_dict(),
                       os.path.join(args.best_eval_output_dir, "scheduler.pt"))
            # logger.info("Saving optimizer and scheduler states to %s", args.best_eval_output_dir)
            # config_file = os.path.join(args.best_eval_output_dir, "best_config.json")
            # json.dump(config, config_file)

        logger.info("\n")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    if args.do_predict:
        config_class, model_class, tokenizer_class = MODEL_CLASSES[
            args.model_type]
        model = model_class.from_pretrained(args.best_eval_output_dir,
                                            config=config)
        model.to(args.device)
        predict(args, model, tokenizer)

    return global_step, tr_loss / global_step
コード例 #12
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True)
    parser.add_argument("--vocab_path", default=None, type=str, required=True)
    parser.add_argument("--output_dir", default=None, type=str, required=True)

    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument('--max_ngram', default=3, type=int)
    parser.add_argument("--do_data", default=False, action='store_true')
    parser.add_argument("--do_split", default=False, action='store_true')
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument("--line_per_file", default=1000000000, type=int)
    parser.add_argument("--file_num", type=int, default=10,
                        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument("--short_seq_prob", type=float, default=0.1,
                        help="Probability of making a short sentence as a training example")
    parser.add_argument("--masked_lm_prob", type=float, default=0.15,
                        help="Probability of masking each token for the LM task")
    parser.add_argument("--max_predictions_per_seq", type=int, default=20,  # 128 * 0.15
                        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)
    args.data_dir = Path(args.data_dir)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +"pregenerate_training_data_ngram.log")
    logger.info("pregenerate training data parameters:\n %s", args)
    tokenizer = BertTokenizer(vocab_file=args.vocab_path, do_lower_case=args.do_lower_case)

    # split big file
    if args.do_split:
        corpus_path =args.data_dir / "corpus/corpus.txt"
        split_save_path = args.data_dir / "/corpus/train"
        if not split_save_path.exists():
            split_save_path.mkdir(exist_ok=True)
        line_per_file = args.line_per_file
        command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_'
        os.system(f"{command}")

    # generator train data
    if args.do_data:
        data_path = args.data_dir / "corpus/train"
        files = sorted([f for f in data_path.parent.iterdir() if f.exists() and '.txt' in str(f)])
        for idx in range(args.file_num):
            logger.info(f"pregenetate {args.data_name}_file_{idx}.json")
            save_filename = data_path / f"{args.data_name}_file_{idx}.json"
            num_instances = 0
            with save_filename.open('w') as fw:
                for file_idx in range(len(files)):
                    file_path = files[file_idx]
                    file_examples = create_training_instances(input_file=file_path,
                                                              tokenizer=tokenizer,
                                                              max_seq_len=args.max_seq_len,
                                                              max_ngram=args.max_ngram,
                                                              short_seq_prob=args.short_seq_prob,
                                                              masked_lm_prob=args.masked_lm_prob,
                                                              max_predictions_per_seq=args.max_predictions_per_seq)
                    file_examples = [json.dumps(instance) for instance in file_examples]
                    for instance in file_examples:
                        fw.write(instance + '\n')
                        num_instances += 1
            metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json"
            print(f"num_instances: {num_instances}")
            with metrics_file.open('w') as metrics_file:
                metrics = {
                    "num_training_examples": num_instances,
                    "max_seq_len": args.max_seq_len
                }
                metrics_file.write(json.dumps(metrics))
コード例 #13
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: ")
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list")
    parser.add_argument("--task_name", default=None, type=str, required=True,
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--vocab_file",default='', type=str)
    parser.add_argument("--spm_model_file",default='',type=str)

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=512, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--output_eval", action='store_true',
                        help="Whether to write output result.")
    parser.add_argument("--do_predict", action='store_true',
                        help="Whether to run the model in inference mode on the test set.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-6, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.")

    parser.add_argument('--logging_steps', type=int, default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=1000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    parser.add_argument("--label_with_bi", action='store_true', help="Label with B/I")
    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    # Setup logging
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name != "ner":
        raise ValueError("Task error: %s, must be ner" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels_ner(args.data_dir, args.label_with_bi)
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config = AlbertConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name)
    tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case,
                                                 spm_model_file=args.spm_model_file)
    model =AlbertFocalLossForNer.from_pretrained(args.model_name_or_path,
                                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                                        config=config)
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train')
        global_step, tr_loss = train(args, train_dataset, label_list, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model,
                                                'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      spm_model_file=args.spm_model_file)
        checkpoints = [(0,args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]),checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints,key =lambda x:x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _,checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertFocalLossForNer.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, label_list, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key,value in results:
                writer.write("%s = %s\n" % (key, str(value)))
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      spm_model_file=args.spm_model_file)
        result = evaluate(args, model, tokenizer, label_list, prefix="")
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key,value in result.items():
                writer.write("%s = %s\n" % (key, str(value)))
コード例 #14
0
def train(args, train_dataset, model, tokenizer):
    writer = SummaryWriter(args.summary_dir)
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    bert_parameters = model.bert.named_parameters()
    start_parameters = model.start_fc.named_parameters()
    end_parameters = model.end_fc.named_parameters()
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in bert_parameters
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
            'lr':
            args.learning_rate
        },
        {
            "params":
            [p for n, p in bert_parameters if any(nd in n for nd in no_decay)],
            "weight_decay":
            0.0,
            'lr':
            args.learning_rate
        },
        {
            "params": [
                p for n, p in start_parameters
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
            'lr':
            0.001
        },
        {
            "params": [
                p for n, p in start_parameters
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0,
            'lr':
            0.001
        },
        {
            "params": [
                p for n, p in end_parameters
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
            'lr':
            0.001
        },
        {
            "params":
            [p for n, p in end_parameters if any(nd in n for nd in no_decay)],
            "weight_decay":
            0.0,
            'lr':
            0.001
        },
    ]
    # optimizer_grouped_parameters = [
    #     {"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
    #      "weight_decay": args.weight_decay, },
    #     {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    # ]
    if args.warmup_steps == -1:
        args.warmup_steps = int(t_total * args.warmup_proportion)
    # args.warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    # scheduler = get_limit_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
    #                                                   num_training_steps=t_total, limit_lr=7e-6)
    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path
                      ) and "checkpoint" in args.model_name_or_path:
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)
        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)
    best_eval_f1 = 0
    tr_loss, logging_loss = 0.0, 0.0
    if args.do_adv:
        fgm = FGM(model, emb_name=args.adv_name, epsilon=args.adv_epsilon)
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for epoch in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": batch[3],
                "end_positions": batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            if args.do_adv:
                fgm.attack()
                loss_adv = model(**inputs)[0]
                if args.n_gpu > 1:
                    loss_adv = loss_adv.mean()
                loss_adv.backward()
                fgm.restore()
            cur_lr = optimizer.state_dict()['param_groups'][0]['lr']
            # cur_lr = scheduler.get_lr()
            pbar(step, {
                'epoch': int(epoch),
                'loss': loss.item(),
                'lr': cur_lr
            })
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                writer.add_scalar('loss', loss.item(), global_step=global_step)
                writer.add_scalar('lr', cur_lr, global_step=global_step)

                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1
                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    logger.warn("\n")
                    if args.local_rank == -1:
                        # Only evaluate when single GPU otherwise metrics may not average well
                        prefix = f'epoch {epoch} global_step {global_step}'
                        results = evaluate(args,
                                           model,
                                           tokenizer,
                                           prefix=prefix)
                        if results['f1'] > best_eval_f1:
                            best_eval_f1 = results['f1']
                            output_dir = os.path.join(args.output_dir,
                                                      "best_eval_checkpoint")
                            if not os.path.exists(output_dir):
                                os.makedirs(output_dir)
                            model_to_save = (
                                model.module
                                if hasattr(model, "module") else model
                            )  # Take care of distributed/parallel training
                            model_to_save.save_pretrained(output_dir)
                            torch.save(
                                args,
                                os.path.join(output_dir, "training_args.bin"))
                            logger.info("Saving model checkpoint to %s",
                                        output_dir)
                            tokenizer.save_vocabulary(output_dir)
                            torch.save(
                                optimizer.state_dict(),
                                os.path.join(output_dir, "optimizer.pt"))
                            torch.save(
                                scheduler.state_dict(),
                                os.path.join(output_dir, "scheduler.pt"))
                            logger.info(
                                "Saving optimizer and scheduler states to %s",
                                output_dir)
                            results['checkoutpoint'] = global_step
                            results['epoch'] = epoch
                            # results.update(vars(args))
                            json.dump(results,
                                      open(
                                          os.path.join(output_dir,
                                                       'eval_result.txt'),
                                          'w'),
                                      ensure_ascii=False,
                                      indent=4)

                # if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                #     # Save model checkpoint
                #     output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                #     if not os.path.exists(output_dir):
                #         os.makedirs(output_dir)
                #     model_to_save = (
                #         model.module if hasattr(model, "module") else model
                #     )  # Take care of distributed/parallel training
                #     model_to_save.save_pretrained(output_dir)
                #     torch.save(args, os.path.join(output_dir, "training_args.bin"))
                #     tokenizer.save_vocabulary(output_dir)
                #     logger.info("Saving model checkpoint to %s", output_dir)
                #     torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                #     torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                #     logger.info("Saving optimizer and scheduler states to %s", output_dir)
        logger.warn("\n")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
コード例 #15
0
def main():
    args = get_argparse().parse_args()
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
    init_logger(log_file=args.output_dir +
                f'/{args.model_type}-{args.task_name}-{time_}.log')
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()
    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.model_name_or_path,
                                          num_labels=num_labels)
    config.soft_label = True
    config.loss_type = args.loss_type
    tokenizer = tokenizer_class.from_pretrained(
        args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, config=config)
    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = (model.module if hasattr(model, "module") else model
                         )  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_vocabulary(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                "-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            if global_step:
                result = {
                    "{}_{}".format(global_step, k): v
                    for k, v in result.items()
                }
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.predict_checkpoints > 0:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
            checkpoints = [
                x for x in checkpoints
                if x.split('-')[-1] == str(args.predict_checkpoints)
            ]
        logger.info("Predict the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            predict(args, model, tokenizer, prefix=prefix)
コード例 #16
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=xlnet_collate_fn if
                                  args.model_type in ['xlnet'] else collate_fn)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    args.warmup_steps = int(t_total * args.warmup_proportion)
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            args.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]

    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to global_step of last saved checkpoint from model path
        try:
            global_step = int(
                args.model_name_or_path.split("-")[-1].split("/")[0])
        except ValueError:
            global_step = 0
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for _ in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in [
                    'bert', 'xlnet', 'albert', 'roberta'
                ] else None  # XLM, DistilBERT don't use segment_ids
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1
                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    print(" ")
                    logs = {}
                    # Log metrics
                    if (
                            args.local_rank == -1
                            and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            eval_key = "eval_{}".format(key)
                            logs[eval_key] = value

                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    logs["learning_rate"] = learning_rate_scalar
                    logs["loss"] = loss_scalar
                    logging_loss = tr_loss

                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
                    print(json.dumps({**logs, **{"step": global_step}}))

                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)

                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)
        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    if args.local_rank in [-1, 0]:
        tb_writer.close()
    return global_step, tr_loss / global_step
コード例 #17
0
def main():
    args = get_argparse()
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
    init_logger(log_file=args.output_dir + f'/{args.model_type}-{args.task_name}-{time_}.log')
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    # Setup logging
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model,
                                                'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
コード例 #18
0
    with torch.no_grad():
        for batch_idx,(data, target) in enumerate(valid_loader):
            data, target = data.to(device), target.to(device)
            output = model(data)
            loss = loss_fn(output, target).item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
            correct = pred.eq(target.view_as(pred)).sum().item()
            valid_loss.update(loss,n = data.size(0))
            valid_acc.update(correct, n=1)
            count += data.size(0)
            pbar(step=batch_idx)
    return {'valid_loss':valid_loss.avg,
            'valid_acc':valid_acc.sum /count}

if __name__ =="__main__":
    parser = argparse.ArgumentParser(description='CIFAR10')
    parser.add_argument("--model", type=str, default='ResNet50')
    parser.add_argument("--task", type=str, default='image')
    parser.add_argument("--epochs", default=50,type=int)
    parser.add_argument('--batch_size',default=256,type=int)
    parser.add_argument("--seed",default=42,type=int)
    parser.add_argument('--norm_type',default='bn',choices = ['bn','enb0','ens0'])
    args = parser.parse_args()
    seed_everything(args.seed)
    loaders = data_loader(args)
    model = resnet18(args.norm_type)
    device = torch.device("cuda")
    model.to(device)
    train(args,loaders,model)

コード例 #19
0
ファイル: run_classifier.py プロジェクト: hanleixie/text
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default='dataset/car_data', type=str, required=False,
                        help="输入数据文件地址")
    parser.add_argument("--model_type", default='albert', type=str, required=False,
                        help="模型种类")
    parser.add_argument("--model_name_or_path", default='prev_trained_model/albert_chinese_small', type=str,
                        required=False,
                        help="模型参数文件地址")
    parser.add_argument("--task_name", default='car', type=str, required=False,
                        help="那个种类数据" + ", ".join(processors.keys()))
    parser.add_argument("--output_dir", default='outputs', type=str, required=False,
                        help="输出文件地址")
    parser.add_argument("--vocab_file", default='prev_trained_model/albert_chinese_small/vocab.txt', type=str)

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
                        help="配置文件地址")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=512, type=int,
                        help="句子最大长度")
    parser.add_argument("--do_train", action='store_true',
                        help="训练")
    parser.add_argument("--do_eval", action='store_true',
                        help="验证")
    parser.add_argument("--do_predict", action='store_true',
                        help="预测")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="批量大小")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="验证批量大小")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="Adam学习率")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-6, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.")

    parser.add_argument('--logging_steps', type=int, default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=1000,
                        help="每多少部保存一次")
    parser.add_argument("--eval_all_checkpoints",type=str,default='do',# action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", type=int, default=0,  # action='store_true',
                        help="GPU")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="随机种子")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=0,
                        help="For distributed training: local_rank")

    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    type_task = args.model_type + '_' + '{}'.format(args.task_name)
    if not os.path.exists(os.path.join(args.output_dir, type_task)):
        os.mkdir(os.path.join(args.output_dir, type_task))
    init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name))

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        # torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    # Setup logging
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    args.model_type = args.model_type.lower()
    config = AlbertConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name)
    tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case,
                                                 )
    model =AlbertForSequenceClassification.from_pretrained(args.model_name_or_path,                                                            config=config)
    #if args.local_rank == 0:
    #    torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    # args.do_train = True
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train')
        
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train:# and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model,
                                                'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    # args.do_eval = True
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      )
        checkpoints = [(0,args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]),checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints,key =lambda x:x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _,checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model =AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key,value in results:
                writer.write("%s = %s\n" % (key, str(value)))

    # args.do_predict = True
    predict_results = []
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      )
        # checkpoints_path = os.path.join(args.output_dir, 'checkpoint-4000')
        checkpoints = [(0, args.output_dir)]
        
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if
                           checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        checkpoints = [checkpoints[-1]]

        for _, checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = predict(args, model, tokenizer, prefix=prefix)
            predict_results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in predict_results:
                writer.write("%s = %s\n" % (key, str(value)))
コード例 #20
0
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}"
    )

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    seed_everything(args.seed)
    tokenizer = BertTokenizer.from_pretrained(args.vocab_path,
                                              do_lower_case=args.do_lower_case)
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = AlbertConfig.from_pretrained(args.config_path)
    model = AlbertForPreTraining(config=bert_config)
コード例 #21
0
def main():
    args = get_argparse().parse_args()
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
    init_logger(log_file=args.output_dir +
                f'/{args.model_type}-{args.task_name}-{time_}.log')

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    seed_everything(args.seed)
    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))

    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    args.num_labels = len(label_list)

    tokenizer = CNerTokenizer.from_pretrained(
        args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    args.vocab_size = tokenizer.vocab_size
    model = BiLSTMForNer(args)
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = (model.module if hasattr(model, "module") else model
                         )  # Take care of distributed/parallel training
        #         model_to_save.save_pretrained(args.output_dir)
        save_model(model_to_save, args.output_dir)
        tokenizer.save_vocabulary(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = CNerTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                "-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = load_model(model, checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            if global_step:
                result = {
                    "{}_{}".format(global_step, k): v
                    for k, v in result.items()
                }
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "a") as writer:
            writer.write("task_name: {}, model_type: {}\n".format(
                args.task_name, args.model_type))
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))
                writer.write("\n")

    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = CNerTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.predict_checkpoints > 0:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
            checkpoints = [
                x for x in checkpoints
                if x.split('-')[-1] == str(args.predict_checkpoints)
            ]
        logger.info("Predict the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = load_model(model, checkpoint)
            model.to(args.device)
            predict(args, model, tokenizer, prefix=prefix)
コード例 #22
0
def main():
    args = get_argparse().parse_args()
    # 模型保存目录
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    # CUDA, GPU
    if torch.cuda.is_available() and not args.no_cuda:
        args.device = torch.device("cuda:0")
    else:
        args.device = torch.device("cpu")
    # 打印参数
    time_ = time.strftime("%Y-%m-%d", time.localtime())
    init_logger(log_file=args.output_dir + f'/{args.model_type}-{args.task_name}-{time_}.log')
    logger.info("="*20+" args "+"="*20)
    for para in args.__dict__:
        msg = para + " = " + str(args.__dict__[para])
        logger.info(msg)
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    processor = NerProcessor()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)
    num_labels = int((num_labels+1)/2)  # 部分B I
    pad_token_label_id = CrossEntropyLoss().ignore_index  # -100

    # Load pretrained model and tokenizer
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels, cache_dir=args.cache_dir if args.cache_dir else None, )    
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None, )
    setattr(config, 'soft_label', args.soft_label)
    model = model_class(config=config)
 
    # 训练
    if args.do_train:
        if args.continue_train:
            model = model_class.from_pretrained(args.continue_train_checkpoint, config=config)
            print(f"Continue training from {args.continue_train_checkpoint}")
        # 基础预训练模型
        elif args.model_type.lower() == "electra":
            model.BaseModel = ElectraModel.from_pretrained(args.model_name_or_path)
            logger.info(f"Loading Electra from {args.model_name_or_path}...")
        elif args.model_type.lower() == "bert" :
            model.BaseModel = BertModel.from_pretrained(args.model_name_or_path)
            logger.info(f"Loading Bert from {args.model_name_or_path}...")        
        elif args.model_type.lower() == "albert":
            model.BaseModel = AlbertModel.from_pretrained(args.model_name_or_path)
            logger.info(f"Loading AlBert from {args.model_name_or_path}...")                     

        print(model)
        model.to(args.device)
        
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, label_list, pad_token_label_id, data_type='train')
        global_step, lr_loss = train(args, train_dataset, model, tokenizer, label_list, pad_token_label_id)
        logger.info(" global_step = %s, average loss = %s", global_step, lr_loss)
        # 保存
        logger.info("Saving model checkpoint to %s", args.output_dir)
        model.save_pretrained(args.output_dir)
        tokenizer.save_vocabulary(args.output_dir)
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

    # 测试集
    if args.do_predict:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        logger.info("Predict the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint, config=config)
            model.to(args.device)
            predict(args, model, tokenizer, label_list, pad_token_label_id, prefix=prefix)
コード例 #23
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default="dataset",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--config_path",
                        default="prev_trained_model/electra_small/config.json",
                        type=str)
    parser.add_argument("--vocab_path",
                        default="prev_trained_model/electra_small/vocab.txt",
                        type=str)
    parser.add_argument(
        "--output_dir",
        default="outputs",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--model_path",
                        default='prev_trained_model/electra_small',
                        type=str)
    parser.add_argument('--data_name', default='electra', type=str)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument('--num_eval_steps', default=100)
    parser.add_argument('--num_save_steps', default=2000)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=128,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--gen_weight",
                        default=1.0,
                        type=float,
                        help='masked language modeling / generator loss')
    parser.add_argument("--disc_weight",
                        default=50,
                        type=float,
                        help='discriminator loss')
    parser.add_argument('--untied_generator',
                        action='store_true',
                        help='tie all generator/discriminator weights?')
    parser.add_argument('--temperature',
                        default=0,
                        type=float,
                        help='temperature for sampling from generator')
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=0.000176,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--continue_train',
                        default='',
                        help="continue train path")
    args = parser.parse_args()

    args.data_dir = Path(args.data_dir)
    args.output_dir = Path(args.output_dir)

    pregenerated_data = args.data_dir / "corpus/train"
    init_logger(log_file=str(args.output_dir / "train_albert_model.log"))
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}"
    )

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    seed_everything(args.seed)
    tokenizer = BertTokenizer.from_pretrained(args.vocab_path,
                                              do_lower_case=args.do_lower_case)
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = ElectraConfig.from_pretrained(args.config_path,
                                                gen_weight=args.gen_weight,
                                                temperature=args.temperature,
                                                disc_weight=args.disc_weight)
    model = ElectraForPreTraining(config=bert_config)

    if args.continue_train:
        print(f"Continue train from {args.continue_train}")
        model = model.from_pretrained(args.continue_train)
    elif args.model_path:
        print("载入预训练模型")
        model.generator = AutoModel.from_pretrained(args.model_path + "/G")
        model.electra = AutoModel.from_pretrained(args.model_path + "/D")

    # print(model)
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_train_optimization_steps)
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    # if args.model_path:
    #     optimizer.load_state_dict(torch.load(args.model_path + "/optimizer.bin"))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    if args.n_gpu > 1:
        # model = BalancedDataParallel(gpu0_bsz=32,dim=0,model).to(device)
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    g_metric = LMAccuracy()
    d_metric = AccuracyThresh()
    tr_g_acc = AverageMeter()
    tr_d_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_g_loss = AverageMeter()
    tr_d_loss = AverageMeter()

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    logger.info(f"  Num workable gpus = {args.n_gpu}")

    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask,
                                masked_lm_labels=lm_label_ids)
                loss, g_loss, d_loss, d_logits, g_logits, is_replaced_label = outputs

                active_indices = input_mask.view(-1) == 1
                active_logits = d_logits.view(-1)[active_indices]
                active_labels = is_replaced_label.view(-1)[active_indices]

                g_metric(logits=g_logits.view(-1, bert_config.vocab_size),
                         target=lm_label_ids.view(-1))
                d_metric(logits=active_logits.view(-1, 1),
                         target=active_labels)

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                    g_loss = g_loss.mean()
                    d_loss = d_loss.mean()

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_g_acc.update(g_metric.value(), n=input_ids.size(0))
                tr_d_acc.update(d_metric.value(), n=input_ids.size(0))

                tr_loss.update(loss.item(), n=1)
                tr_g_loss.update(g_loss.item(), n=1)
                tr_d_loss.update(d_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['g_acc'] = tr_g_acc.avg
                    train_logs['d_acc'] = tr_d_acc.avg
                    train_logs['g_loss'] = tr_g_loss.avg
                    train_logs['d_loss'] = tr_d_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_g_acc.reset()
                    tr_d_acc.reset()
                    tr_loss.reset()
                    tr_g_loss.reset()
                    tr_d_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = args.output_dir / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        model.module.generator.save_pretrained(
                            str(output_dir / "G"))
                        logger.info("Saving generator model checkpoint to %s",
                                    output_dir / "G")
                        model.module.electra.save_pretrained(
                            str(output_dir / "D"))
                        logger.info("Saving electra model checkpoint to %s",
                                    output_dir / "D")

                        torch.save(optimizer.state_dict(),
                                   str(output_dir / "optimizer.bin"))

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        output_config_file_D = output_dir / "D" / CONFIG_NAME
                        output_config_file_G = output_dir / "G" / CONFIG_NAME

                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())
                        with open(str(output_config_file_D), 'w') as f:
                            f.write(
                                model.module.electra.config.to_json_string())
                        with open(str(output_config_file_G), 'w') as f:
                            f.write(
                                model.module.generator.config.to_json_string())
                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
コード例 #24
0
def train(args, train_dataset, model, tokenizer, label_list, pad_token_label_id):
    """ Train the model """
    # 载入数据
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)
    # 总训练步数
    t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
    # 优化器
    if args.optimizer.lower() == "adamw":
        no_decay = ["bias", "LayerNorm.weight"]
        # bert_parameters = eval('model.{}'.format(args.model_type)).named_parameters()
        base_model_param_optimizer = list(model.BaseModel.named_parameters())
        start_parameters = model.start_fc.named_parameters()
        end_parameters = model.end_fc.named_parameters()
        args.bert_lr = args.bert_lr if args.bert_lr else args.learning_rate
        args.start_lr = args.start_lr if args.start_lr else args.learning_rate
        args.end_lr = args.end_lr if args.end_lr else args.learning_rate
        optimizer_grouped_parameters = [
            {"params": [p for n, p in base_model_param_optimizer if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
            "lr": args.bert_lr},
            {"params": [p for n, p in base_model_param_optimizer if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
            "lr": args.bert_lr},

            {"params": [p for n, p in start_parameters if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
            "lr": args.start_lr},
            {"params": [p for n, p in start_parameters if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
            "lr": args.start_lr},

            {"params": [p for n, p in end_parameters if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
            "lr": args.end_lr},
            {"params": [p for n, p in end_parameters if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
            "lr": args.end_lr}
        ]

        if "lstm" in args.model_type.lower():
             lstm_param_optimizer = list(model.Bilstm.named_parameters())
             optimizer_grouped_parameters.extend([{'params': [p for n, p in lstm_param_optimizer if not any(nd in n for nd in no_decay)],
                                                   'weight_decay': args.weight_decay, 'lr': args.crf_learning_rate},
                                                  {'params': [p for n, p in lstm_param_optimizer if any(nd in n for nd in no_decay)],
                                                   'weight_decay': 0.0,'lr': args.crf_learning_rate}])

        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    else:
        optimizer = Lamb(model.parameters())
    # 学习率
    args.warmup_steps = int(t_total * args.warmup_proportion)    # 学习率预热
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
                                                num_training_steps=t_total)

    # 继续训练
    if args.continue_train and \
        os.path.isfile(os.path.join(args.continue_train_checkpoint, "optimizer.pt")) and \
        os.path.isfile(os.path.join(args.continue_train_checkpoint, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))

    if args.fp16:
        try:
            from apex import amp
            logger.info("using fp16 !!!")
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
    # 多GPU训练 (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # adversarial_training
    if args.adv_training == 'fgm':
        adv = FGM(model=model, param_name='word_embeddings')
    elif args.adv_training == 'pgd':
        adv = PGD(model=model, param_name='word_embeddings') 

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                args.train_batch_size
                * args.gradient_accumulation_steps,
                )
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)
    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(args.seed)  # 复现
    for _ in range(int(args.num_train_epochs)):
        logger.info(f"############### Epoch_{_} ###############")
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {"input_ids": batch[0], "attention_mask": batch[1],
                      "start_positions": batch[5], "end_positions": batch[6]}
            if args.model_type != "distilbert":   # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            loss = outputs[0] 
            if args.n_gpu > 1:
                loss = loss.mean()
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            if args.adv_training:
                adv.adversarial_training(args, inputs, optimizer)             
            
            pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
                scheduler.step()
                optimizer.step()
                model.zero_grad()
                global_step += 1
                if args.logging_steps > 0 and global_step % args.logging_steps == 0:  # 验证集
                    logger.info("\n global_step: %s", global_step)
                    logger.info("average tr_loss: %s", tr_loss/global_step)
                    evaluate(args, model, tokenizer, label_list, pad_token_label_id)
                if args.save_steps > 0 and global_step % args.save_steps == 0:  # 保存模型
                    logger.info("global_step: %s 模型已保存!", global_step)
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    logger.info("Saving model checkpoint to %s", output_dir)
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
                    tokenizer.save_vocabulary(output_dir)
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

        logger.info("\n")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
コード例 #25
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    if args.max_steps > 0:
        num_training_steps = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        num_training_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    args.warmup_steps = int(num_training_steps * args.warmup_proportion)
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_training_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", num_training_steps)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for _ in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3],
                'token_type_ids': batch[2]
            }
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(),
                                               args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

            if args.local_rank in [
                    -1, 0
            ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                # Log metrics
                if args.local_rank == -1:  # Only evaluate when single GPU otherwise metrics may not average well
                    evaluate(args, model, tokenizer)

            if args.local_rank in [
                    -1, 0
            ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir,
                                          'checkpoint-{}'.format(global_step))
                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                model_to_save = model.module if hasattr(
                    model, 'module'
                ) else model  # Take care of distributed/parallel training
                model_to_save.save_pretrained(output_dir)
                torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                logger.info("Saving model checkpoint to %s", output_dir)
            pbar(step, {'loss': loss.item()})
        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
コード例 #26
0
ファイル: run_classifier.py プロジェクト: hanleixie/text
def main():
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    # type_task = args.model_type + '_' + '{}'.format(args.task_name)
    # if not os.path.exists(os.path.join(args.output_dir, type_task)):
    #     os.mkdir(os.path.join(args.output_dir, type_task))
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
    args.device = device

    # logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
    #                args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
    seed_everything(args.seed)
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # if args.local_rank not in [-1, 0]:
    #     torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config = AlbertConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    tokenizer = tokenization_albert.FullTokenizer(
        vocab_file=args.vocab_file,
        do_lower_case=args.do_lower_case,
    )
    model = AlbertForSequenceClassification.from_pretrained(
        args.model_name_or_path, config=config)
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    args.do_train = True
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')

        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    if args.do_train:
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    args.do_eval = True
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
        )
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")

        with open(output_eval_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))

    args.do_predict = True
    predict_results = []
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
        )
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        checkpoints = [checkpoints[-1]]
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = predict(args, model, tokenizer, prefix=prefix)
            predict_results.extend([(k + '_{}'.format(global_step), v)
                                    for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in predict_results:
                writer.write("%s = %s\n" % (key, str(value)))
コード例 #27
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written.",
    )

    # Other parameters
    parser.add_argument('--markup',
                        default='bios',
                        type=str,
                        choices=['bios', 'bio'])
    parser.add_argument('--loss_type',
                        default='ce',
                        type=str,
                        choices=['lsr', 'focal', 'ce'])
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--train_max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument(
        "--eval_max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train",
                        action="store_true",
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action="store_true",
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action="store_true",
                        help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action="store_true",
        help="Whether to run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case",
        action="store_true",
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--do_adv",
                        action="store_true",
                        help="Whether to adversarial training.")
    parser.add_argument('--adv_epsilon',
                        default=1.0,
                        type=float,
                        help="Epsilon for adversarial.")
    parser.add_argument('--adv_name',
                        default='word_embeddings',
                        type=str,
                        help="name for adversarial layer.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )

    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )
    parser.add_argument("--logging_steps",
                        type=int,
                        default=50,
                        help="Log every X updates steps.")
    parser.add_argument("--save_steps",
                        type=int,
                        default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument(
        '--predict_checkpoints',
        action="store_true",
        help=
        "Predict checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Avoid using CUDA when available")
    parser.add_argument("--overwrite_output_dir",
                        action="store_true",
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        "--overwrite_cache",
        action="store_true",
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument("--seed",
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument("--server_ip",
                        type=str,
                        default="",
                        help="For distant debugging.")
    parser.add_argument("--server_port",
                        type=str,
                        default="",
                        help="For distant debugging.")
    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
    init_logger(log_file=args.output_dir +
                f'/{args.model_type}-{args.task_name}-{time_}.log')
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()
    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        loss_type=args.loss_type,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = (model.module if hasattr(model, "module") else model
                         )  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_vocabulary(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                "-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            if global_step:
                result = {
                    "{}_{}".format(global_step, k): v
                    for k, v in result.items()
                }
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.predict_checkpoints > 0:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
            checkpoints = [
                x for x in checkpoints
                if x.split('-')[-1] == str(args.predict_checkpoints)
            ]
        logger.info("Predict the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            predict(args, model, tokenizer, prefix=prefix)
コード例 #28
0
ファイル: run_classifier.py プロジェクト: hanleixie/text
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    if args.max_steps > 0:
        num_training_steps = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        num_training_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    args.warmup_steps = int(num_training_steps * args.warmup_proportion)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_training_steps)

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", num_training_steps)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for _ in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            inputs['token_type_ids'] = batch[2]
            outputs = model(**inputs)
            loss = outputs[0]

            if args.n_gpu > 1:
                loss = loss.mean()
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()
                model.zero_grad()
                global_step += 1

            if args.local_rank in [
                    -1, 0
            ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                # Log metrics
                if args.local_rank == -1:
                    evaluate(args, model, tokenizer)

            # if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
            #     output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
            #     if not os.path.exists(output_dir):
            #         os.makedirs(output_dir)
            #     model_to_save = model.module if hasattr(model,
            #                                             'module') else model
            #     model_to_save.save_pretrained(output_dir)
            #     torch.save(args, os.path.join(output_dir, 'training_args.bin'))
            #     logger.info("Saving model checkpoint to %s", output_dir)
            pbar(step, {'loss': loss.item()})

        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()

    # if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
    output_dir = os.path.join(args.output_dir,
                              'checkpoint-{}'.format(global_step))
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    model_to_save = model.module if hasattr(model, 'module') else model
    model_to_save.save_pretrained(output_dir)
    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
    logger.info("Saving model checkpoint to %s", output_dir)

    return global_step, tr_loss / global_step
コード例 #29
0
def main():
    args = get_argparse().parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
    init_logger(log_file=args.output_dir +
                f'/{args.model_type}-{args.task_name}-{time_}.log')
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None)
    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer,
                                     config)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)
コード例 #30
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    ###################################################################
    # 初始化一个pandas DataFrame进行训练日志的存储
    df_path = args.output_dir + "/bert" + "df_log.pickle"
    if not os.path.isfile(df_path):
        df = pd.DataFrame(columns=[
            "epoch", "train_loss", "train_auc", "test_loss", "test_auc"
        ])
        df.to_pickle(df_path)
        print("log DataFrame created!")
    #################################################################
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    t_total = len(train_dataloader
                  ) // args.gradient_accumulation_steps * args.num_train_epochs
    args.warmup_steps = int(t_total * args.warmup_proportion)
    no_decay = ['bias', 'LayerNorm.weight']

    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)

    scheduler = WarmupLinearSchedule(optimizer,
                                     warmup_steps=args.warmup_steps,
                                     t_total=t_total)

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()

    seed_everything(args.seed)
    for _ in range(int(args.num_train_epochs)):
        all_predictions, all_labels = [], []
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Train')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3]
            }
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in [
                    'bert', 'xlnet', 'albert', 'roberta'
                ] else None  # XLM, DistilBERT don't use segment_ids
            outputs = model(**inputs)
            loss = outputs[0]

            #############################################################################################################################
            # 提取预测的结果和标记, 并存到all_predictions, all_labels里
            # 用来计算auc
            # 存储所有预测的结果和标记, 用来计算auc

            predictions = fl.softmax(outputs[1], dim=-1)[:, 1]
            predictions = predictions.detach().cpu().numpy().reshape(
                -1).tolist()
            labels = batch[3].cpu().numpy().reshape(-1).tolist()
            all_predictions.extend(predictions)
            all_labels.extend(labels)
            # 计算auc
            fpr, tpr, thresholds = metrics.roc_curve(y_true=all_labels,
                                                     y_score=all_predictions)
            auc = metrics.auc(fpr, tpr)

            #############################################################################################################################

            if args.n_gpu > 1:
                loss = loss.mean()
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(),
                                           args.max_grad_norm)

            tr_loss += loss.item()
            ###############################################################################
            log_dic = {
                "epoch": _,
                "train_loss": tr_loss / (step + 1),
                "train_auc": auc,
                "test_loss": 0,
                "test_auc": 0
            }
            if step % 10 == 0:
                print((str({k: v for k, v in log_dic.items() if v != 0})))

            df = pd.read_pickle(df_path)
            df = df.append([log_dic])
            df.reset_index(inplace=True, drop=True)
            df.to_pickle(df_path)
            ##############################################################################
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()
                model.zero_grad()
                global_step += 1

                # flag
                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:

                    if args.local_rank == -1:
                        results = evaluate(args, model, tokenizer)

                # 每args.save_steps步保存一次模型
                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:

                    output_dir = os.path.join(
                        args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(
                        model, 'module'
                    ) else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args,
                               os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)
                    tokenizer.save_vocabulary(vocab_path=output_dir)
            pbar(step, {'loss': loss.item()})
        ####################################################################################################################
        global all_auc
        global threshold

        all_auc.append(auc)
        best_auc = max(all_auc)
        if all_auc[-1] < best_auc:
            threshold += 1
            args.learning_rate *= 0.8
            optimizer = AdamW(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              eps=args.adam_epsilon)
            predict(args, model, tokenizer, prefix="")
        else:
            # 如果
            threshold = 0

        if threshold >= 5:
            print("epoch {} has the lowest loss".format(
                0 + np.argmax(np.array(all_auc))))
            print("early stop!")
            break
        #####################################################################################################################
        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step