コード例 #1
0
def load_pca(save_path):
    res = defaultdict(list)
    experiment_dirs = sorted(
        [os.path.join(save_path, d) for d in os.listdir(save_path)])
    for d in experiment_dirs:
        temp_res = fio.load_pickle(d)
        reduce.chain_defaultdicts(res, temp_res)
    return res
コード例 #2
0
ファイル: analyze.py プロジェクト: pwang724/PHD_experiment
def analyze_data(save_path,
                 condition_config,
                 m_threshold=None,
                 excitatory=True):
    name = 'dict'
    if not excitatory:
        name += '_I'
    res = fio.load_pickle(os.path.join(save_path, name + '.pkl'))

    list_odor_on = res['DAQ_O_ON_F']
    list_water_on = res['DAQ_W_ON_F']
    res['ssig'] = []
    res['msig'] = []
    res['sig'] = []

    for i in range(len(list_odor_on)):
        p_list = res['p'][i]
        dff_list = res['dff'][i]
        ssig_list = []
        msig_list = []
        sig_list = []
        onset_list = []
        amplitude_list = []
        duration_list = []
        odor = res['odor'][i]
        for p, dff in zip(p_list, dff_list):
            ssig = np.array(p) < condition_config.p_threshold
            reached_ssig = [
                np.all(x)
                for x in _rolling_window(ssig, condition_config.p_window)
            ]
            if odor == 'water':
                s, e = list_water_on[i], list_water_on[i] + 10
            else:
                s, e = list_odor_on[i], list_water_on[i]

            if np.any(reached_ssig[s:e]):
                statistical_significance = True
            else:
                statistical_significance = False

            if m_threshold == None:
                magnitude_threshold = condition_config.m_threshold
            else:
                magnitude_threshold = m_threshold

            if excitatory:
                msig = dff > magnitude_threshold
            else:
                msig = dff < magnitude_threshold

            reached_msig = np.array([
                np.all(x)
                for x in _rolling_window(msig, condition_config.m_window)
            ])
            if np.any(reached_msig[s:e]):
                mag_significance = True
            else:
                mag_significance = False

            if statistical_significance and mag_significance:
                reached_ssig = [
                    np.all(x)
                    for x in _rolling_window(ssig, condition_config.p_window)
                ]
                onset = np.where(reached_ssig[s:e])[0][0]
                onset_list.append(onset)

                duration = np.sum(reached_msig[s:e])
                duration_list.append(duration)

                if excitatory:
                    amplitude = np.max(dff[s:e])
                else:
                    amplitude = np.min(dff[s:e])
                amplitude_list.append(amplitude)
            else:
                onset_list.append(-1)
                duration_list.append(-1)
                amplitude_list.append(-1)

            ssig_list.append(statistical_significance)
            msig_list.append(mag_significance)
            sig_list.append(statistical_significance and mag_significance)
        res['ssig'].append(np.array(ssig_list).astype(int))
        res['msig'].append(np.array(msig_list).astype(int))
        res['sig'].append(np.array(sig_list).astype(int))

        res['onset'].append(np.array(onset_list).astype(int))
        res['duration'].append(np.array(duration_list).astype(int))
        res['amplitude'].append(np.array(amplitude_list))
    for key, val in res.items():
        res[key] = np.array(val)
    return res
コード例 #3
0
                                             plot_bool=True,
                                             odor_end=odor_end)
    ixa = temp['odor_valence'] == 'CS+'
    ixb = temp['odor_valence'] == 'CS-'
    a = temp['corrcoef'][ixa]
    b = temp['corrcoef'][ixb]
    print(ranksums(a, b))

if condition.name == 'PIR':
    naive_config = statistics.analyze.PIR_NAIVE_Config()
    data_path_ = os.path.join(Config.LOCAL_DATA_PATH,
                              Config.LOCAL_DATA_TIMEPOINT_FOLDER,
                              naive_config.condition.name)
    save_path_ = os.path.join(Config.LOCAL_EXPERIMENT_PATH, 'COUNTING',
                              naive_config.condition.name)
    res_naive = fio.load_pickle(os.path.join(save_path_, 'dict.pkl'))
    learned_day_per_mouse_, last_day_per_mouse_ = get_days_per_mouse(
        data_path_, naive_config.condition)
    #
    res = statistics.analyze.analyze_data(save_path,
                                          condition_config,
                                          m_threshold=.1)
    # res_naive = statistics.analyze.analyze_data(save_path_, naive_config, m_threshold= .1)
    # res_naive['odor_valence'] = np.array(['Naive'] * len(res_naive['day']))

    excitatory = [True, False]
    thresholds = [0.1, -0.05]
    for i, sign in enumerate(excitatory):
        res = statistics.analyze.analyze_data(save_path,
                                              condition_config,
                                              m_threshold=thresholds[i],
コード例 #4
0
import seaborn as sns

conditions = [
    conditions.PIR, conditions.OFC, conditions.OFC_LONGTERM,
    conditions.OFC_COMPOSITE, conditions.MPFC_COMPOSITE
]

save_path = os.path.join(Config.LOCAL_FIGURE_PATH, 'MISC', 'SNR')
out = defaultdict(list)

psth = False

for condition in conditions:
    data_path = os.path.join(Config.LOCAL_EXPERIMENT_PATH, 'COUNTING',
                             condition.name)
    res = fio.load_pickle(os.path.join(data_path, 'dict.pkl'))
    mice = np.unique(res['mouse'])
    res = filter.filter_days_per_mouse(res, len(mice) * [0])

    if psth:
        for i, d in enumerate(res['data']):
            res['data'][i] = np.mean(d, axis=1)

    for mouse in mice:
        temp = filter.filter(res, {'mouse': mouse})

        data = np.concatenate(temp['data'], axis=1)
        out['condition'].append(condition.name)
        out['mouse'].append(mouse)
        out['data'].append(data)
コード例 #5
0
from collections import defaultdict
from tools import file_io
import filter
import reduce
import plot

data_directory = Config().LOCAL_DATA_PATH
data_directory = os.path.join(data_directory, 'registration','motion_metrics')

conditions = glob.glob(os.path.join(data_directory, '*/'))

res = defaultdict(list)
for c in conditions:
    mouse_pickles = glob.glob(os.path.join(c, '*.pkl'))
    for pickle in mouse_pickles:
        temp = file_io.load_pickle(pickle)
        reduce.chain_defaultdicts(res, temp)

res['within_day_crisp_average'] = []
for v in res['within_day_crisp']:
    res['within_day_crisp_average'].append(np.mean(v))

for k, v in res.items():
    res[k] = np.array(v)


save_path = os.path.join(Config.LOCAL_FIGURE_PATH, 'MISC', 'MOTION_METRICS')

mouse = 'M4_OFC'

vmin, vmax = 0.6, 1
コード例 #6
0
from scipy.stats import ranksums, wilcoxon, kruskal

plt.style.use('default')
mpl.rcParams['pdf.fonttype'] = 42
mpl.rcParams['ps.fonttype'] = 42
mpl.rcParams['font.size'] = 6
mpl.rcParams['font.family'] = 'arial'

condition_config = statistics.analyze.OFC_Reversal_Config()
condition = condition_config.condition
data_path = os.path.join(Config.LOCAL_DATA_PATH, Config.LOCAL_DATA_TIMEPOINT_FOLDER, condition.name)
save_path = os.path.join(Config.LOCAL_EXPERIMENT_PATH, 'COUNTING', condition.name)
figure_path = os.path.join(Config.LOCAL_FIGURE_PATH, 'OTHER', 'COUNTING',  condition.name)

#analysis
res = fio.load_pickle(os.path.join(save_path, 'dict.pkl'))
# res.pop('data')
# retrieving relevant days
learned_day_per_mouse, last_day_per_mouse = get_days_per_mouse(data_path, condition)

if condition_config.start_at_training and hasattr(condition, 'training_start_day'):
    start_days_per_mouse = condition.training_start_day
else:
    start_days_per_mouse = [0] * len(np.unique(res['mouse']))
training_start_day_per_mouse = condition.training_start_day

lick_res = behavior.behavior_analysis.get_licks_per_day(data_path, condition)
analysis.add_odor_value(lick_res, condition)
lick_res = filter.filter(lick_res, {'odor_valence': ['CS+', 'CS-', 'PT CS+']})
lick_res = reduce.new_filter_reduce(lick_res, ['odor_valence', 'day', 'mouse'], reduce_key='lick_boolean')