display.save(res,70,80,folder='./imgs_pie',name='out',index=i) if(int(options.classifier)): train = np.loadtxt("../datasets/multi_pie_train.dat") l_train = np.loadtxt("../datasets/multi_pie_l_train.dat") test = np.loadtxt("../datasets/multi_pie_test.dat") l_test = np.loadtxt("../datasets/multi_pie_l_test.dat") train = train+abs(np.min(train)) train = train/np.max(train) train = train.astype("float32") test = test+abs(np.min(test)) test = test/np.max(test) test = test.astype("float32") h = auto.get_hidden(np.asarray(train),session=session) k = knn_classifier.knn_classifier(data=h,label=l_train,k=3) #k = knn_classifier.knn_classifier(data=train,label=l_train,k=3) k.learn() t = auto.get_hidden(np.asarray(test),session=session) print k.accuracy(t,l_test) print zip(k.predict(t),l_test) #print k.accuracy(test,l_test)
display.display(c,28,28) m = np.mean(data[:500],axis=0) c = np.matmul((b+v),w) ''' #display.display(c,28,28) #display.display(np.ndarray.flatten(np.array(m)),28,28) if(int(options.save)): for i in range(50): display.save(data[i],28,28,folder='./imgs',name='in',index=i) res = auto.get_output(np.asarray([data[i]]),session=session) #if(options.normed): # res = res + np.cumsum(data,axis=0)[-1]/data.shape[0] display.save(res,28,28,folder='./imgs',name='out',index=i) if(int(options.classifier)): h = auto.get_hidden(np.asarray(data),session=session) k = knn_classifier.knn_classifier(data=h,label=lab,k=3) k.learn() test, labtest = get_data_from_minst.get_test_from_mnist() t = auto.get_hidden(np.asarray(test),session=session) print k.accuracy(t,labtest)