threshold = 1e-4 # Threshold, below which ignore differences diffs = np.zeros((fieldssmallest, 6), dtype=floattype) for ID, name in fields.items(): max = np.amax(np.abs(new[:fieldssmallest,ID])) if max < threshold: diffs[:,ID] = 0 diffsum = 0 print('Detected differences of less than {} when comparing {} field component, therefore set as zero.'.format(threshold, fields[ID])) else: diffs[:,ID] = (np.abs(new[:fieldssmallest,ID] - old[:fieldssmallest,ID]) / max) * 100 diffsum = (np.sum(np.abs(new[:fieldssmallest,ID] - old[:fieldssmallest,ID])) / np.sum(np.abs(new[:fieldssmallest,ID]))) * 100 print('Total differences in field component {}: {:.1f}%'.format(name, diffsum)) # Plot new fig1, plt1 = plot_Ascan(newfile + ' versus ' + oldfile, timenew, new[:,0], new[:,2], new[:,4], new[:,1], new[:,3], new[:,5]) # Add old and set legend for index, ax in enumerate(fig1.axes): if plotorder[index] in [0, 2, 4]: ax.plot(timeold, old[:,plotorder[index]], 'r', label='old', lw=2, ls='--') else: ax.plot(timeold, old[:,plotorder[index]], label='old', lw=2, ls='--') ax.set_xlim(0, timeold[-1]) handles, existlabels = ax.get_legend_handles_labels() ax.legend(handles, ['Model (new code)', 'Model (old C code)']) # Plots of differences fig2, plt2 = plot_Ascan('Deltas: ' + newfile + ' versus ' + oldfile, timenew[:timesmallest], diffs[:,0], diffs[:,2], diffs[:,4], diffs[:,1], diffs[:,3], diffs[:,5]) [ax.set_xlim(0, timenew[timesmallest - 1]) for ax in fig2.axes] [ax.set_ylim(0, np.ceil(np.amax(np.abs(diffs)))) for ax in fig2.axes]
# Differences threshold = 1e-4 # Threshold, below which ignore differences diffs = np.zeros((iterations, 6), dtype=floattype) for ID, name in fields.items(): max = np.amax(np.abs(analytical[:,ID])) if max < threshold: diffs[:,ID] = 0 diffsum = 0 print('Detected differences of less than {} when comparing {} field component, therefore set as zero.'.format(threshold, fields[ID])) else: diffs[:,ID] = (np.abs(analytical[:,ID] - model[:,ID]) / max) * 100 diffsum = (np.sum(np.abs(analytical[:,ID] - model[:,ID])) / np.sum(np.abs(analytical[:,ID]))) * 100 print('Total differences in field component {}: {:.1f}%'.format(name, diffsum)) # Plot model fig1, plt1 = plot_Ascan(modelfile + ' versus analytical solution', time, model[:,0], model[:,1], model[:,2], model[:,3], model[:,4], model[:,5]) # Add analytical solution and set legend for index, ax in enumerate(fig1.axes): if index in [0, 2, 4]: ax.plot(time, analytical[:,plotorder[index]], 'r', label='analytical', lw=2, ls='--') else: ax.plot(time, analytical[:,plotorder[index]], label='analytical', lw=2, ls='--') ax.set_xlim(0, time[-1]) handles, existlabels = ax.get_legend_handles_labels() ax.legend(handles, ['Model', 'Analytical']) # Plots of differences fig2, plt2 = plot_Ascan('Deltas: ' + modelfile + ' versus analytical solution', time, diffs[:,0], diffs[:,1], diffs[:,2], diffs[:,3], diffs[:,4], diffs[:,5]) [ax.set_xlim(0, time[-1]) for ax in fig2.axes] [ax.set_ylim(0, np.ceil(np.amax(np.abs(diffs)))) for ax in fig2.axes]
if max < threshold: diffs[:, ID] = 0 diffsum = 0 print( 'Detected differences of less than {} when comparing {} field component, therefore set as zero.' .format(threshold, fields[ID])) else: diffs[:, ID] = (np.abs(analytical[:, ID] - model[:, ID]) / max) * 100 diffsum = (np.sum(np.abs(analytical[:, ID] - model[:, ID])) / np.sum(np.abs(analytical[:, ID]))) * 100 print('Total differences in field component {}: {:.1f}%'.format( name, diffsum)) # Plot model fig1, plt1 = plot_Ascan(modelfile + ' versus analytical solution', time, model[:, 0], model[:, 1], model[:, 2], model[:, 3], model[:, 4], model[:, 5]) # Add analytical solution and set legend for index, ax in enumerate(fig1.axes): if index in [0, 2, 4]: ax.plot(time, analytical[:, plotorder[index]], 'r', label='analytical', lw=2, ls='--') else: ax.plot(time, analytical[:, plotorder[index]], label='analytical',