コード例 #1
0
    def _populate_solution_land_allocation(self):
        """
        'AEZ Data'!A63:AD70
        Calculates solution specific Drawdown land allocation using values from 'allocation' directory.
        """
        df = pd.read_csv(LAND_CSV_PATH.joinpath('aez',
                                                'solution_la_template.csv'),
                         index_col=0)
        if self.ignore_allocation:
            self.soln_land_alloc_df = df.fillna(1)
            return
        else:
            df = df.fillna(0)

        for tmr in self.regimes:
            tmr_path = LAND_CSV_PATH.joinpath('allocation', to_filename(tmr))
            for col in df:
                if col.startswith(
                        'AEZ29'
                ):  # this zone is not included in land allocation
                    continue
                aez_path = tmr_path.joinpath(to_filename(col) + '.csv')
                la_df = pd.read_csv(aez_path, index_col=0)
                total_perc_allocated = la_df.loc[
                    self.solution_name]['Total % allocated']
                if total_perc_allocated > 0:
                    df.at[tmr, col] = total_perc_allocated
        else:
            self.soln_land_alloc_df = df
コード例 #2
0
ファイル: dez.py プロジェクト: benibienz/drawdown
 def _populate_solution_ocean_allocation(self):
     """
     'DEZ Data'!A63:AD70
     Calculates solution specific Drawdown ocean allocation using values from 'allocation' directory.
     """
     df = pd.read_csv(OCEAN_CSV_PATH.joinpath('dez', 'solution_oa_template.csv'), index_col=0)
     df = df.fillna(0)
     for tdr in self.regimes:
         tdr_path = OCEAN_CSV_PATH.joinpath('allocation', to_filename(tdr))
         for col in df:
             dez_path = tdr_path.joinpath(to_filename(col) + '.csv')
             oa_df = pd.read_csv(dez_path, index_col=0)
             total_perc_allocated = oa_df.loc[self.solution_name]['Total % allocated']
             if total_perc_allocated > 0:
                 df.at[tdr, col] = total_perc_allocated
     self.soln_ocean_alloc_df = df
コード例 #3
0
def get_tla_regime_and_region():
    """ Returns total land area df (rows = regions, columns = regimes) """
    total_land_dict = {}
    for tmr in THERMAL_MOISTURE_REGIMES:
        df = pd.read_csv(datadir.joinpath('land', 'world',
                                          to_filename(tmr) + '.csv'),
                         index_col=0).iloc[:5, 0] / 10000
        total_land_dict[tmr] = df
    return pd.DataFrame(total_land_dict)
コード例 #4
0
ファイル: dez.py プロジェクト: benibienz/drawdown
 def _populate_world_ocean_allocation(self):
     """
     'DEZ Data'!D353:AG610
     Combines world ocean area data with Drawdown's ocean allocation values. Creates a dict of
     DataFrames sorted by Thermal Dynamical Regime.
     """
     self.world_ocean_alloc_dict = {}
     for tdr in self.regimes:
         df = pd.read_csv(OCEAN_CSV_PATH.joinpath('world', to_filename(tdr) + '.csv'), index_col=0).drop(
             'Total Area (Mha)', 1)
         self.world_ocean_alloc_dict[tdr] = df.mul(self.soln_ocean_alloc_df.loc[tdr], axis=1)
コード例 #5
0
def get_tla_regime_and_aez(region=None):
    """ Returns total land area df (rows = regimes, columns = AEZs) """
    total_land_dict = {}
    for tmr in THERMAL_MOISTURE_REGIMES:
        df = pd.read_csv(datadir.joinpath('land', 'world',
                                          to_filename(tmr) + '.csv'),
                         index_col=0).iloc[:5, 1:]
        if region is not None:
            df = df.loc[region, :] / 10000
        else:
            df = df.sum(axis=0) / 10000
        total_land_dict[tmr] = df
    return pd.DataFrame(total_land_dict).T
コード例 #6
0
 def _populate_world_land_allocation(self):
     """
     'AEZ Data'!D353:AG610
     Combines world land area data with Drawdown's land allocation values. Creates a dict of
     DataFrames sorted by Thermal Moisture Region.
     """
     self.world_land_alloc_dict = {}
     for tmr in self.regimes:
         df = pd.read_csv(LAND_CSV_PATH.joinpath('world',
                                                 to_filename(tmr) + '.csv'),
                          index_col=0).drop('Total Area (km2)', 1)
         # apply fixed world fraction to each region
         self.world_land_alloc_dict[tmr] = df.mul(
             self.soln_land_alloc_df.loc[tmr], axis=1) / 10000
コード例 #7
0
    def make_csvs(self):
        """ Makes csv versions of tables and stores in data/land/allocation """

        path = LAND_CSV_PATH if self.key == 'land' else OCEAN_CSV_PATH
        # Sanity check
        if os.listdir(path):
            ans = input('Overwrite existing csv files? y or n')
            if ans == 'n':
                return
            elif ans != 'y':
                print('Not a valid answer')
                return

        # check the DataFrames are loaded
        if self.df_dict is None:
            self.read_allocation_xls()

        # write CSVs
        for regime in self.regimes:
            filename = to_filename(regime)
            os.mkdir(path.joinpath(filename))
            for zone, df in self.df_dict[regime].items():
                df.to_csv(path.joinpath(filename, to_filename(zone) + '.csv'))
コード例 #8
0
def total_land_array(compress_aezs=False):
    """
    Note: currently not used
    Build 3-D DataArray from World land data. Dimensions are:
    - region (the 5 main world regions)
    - aez (29 AEZ types)
    - tmr (6 Thermal Moisture Regimes)
    """
    import xarray as xr
    tmr_list = []
    for tmr in THERMAL_MOISTURE_REGIMES:
        df = pd.read_csv(datadir.joinpath('land', 'world',
                                          to_filename(tmr) + '.csv'),
                         index_col=0).loc[MAIN_REGIONS, :].iloc[:, 1:] / 10000
        if compress_aezs:
            for land_cover, aez_codes in AEZ_LAND_COVER_MAP.items():
                df[land_cover] = df.loc[:, aez_codes].sum(axis=1)
                df.drop(columns=aez_codes, inplace=True)
            df.drop(columns=['AEZ29: All Barren Land'], inplace=True)
            print(df)
        tmr_list.append(xr.DataArray(df, dims=['region', 'aez']))
    array = xr.concat(tmr_list,
                      dim=pd.Index(THERMAL_MOISTURE_REGIMES, name='tmr'))
    return array
コード例 #9
0
ファイル: vma_xls_extract.py プロジェクト: benibienz/drawdown
    def read_xls(self, csv_path=None, alt_vma=False):
        """
        Reads the whole Variable Meta-analysis xls sheet.
        Note this currently only works for LAND solutions.
        csv_path: (pathlib path object or str) If specified, will write CSVs to path for each table
        alt_vma: False = process the primary VMA sheet 'Variable Meta-analysis',
                 True = process the alternate VMA sheet 'Variable Meta-analysis-DD' with fixed
                    values for Average, High, and Low.
        """
        if alt_vma:
            sheetname = 'Variable Meta-analysis-DD'
            fixed_summary = True
        else:
            sheetname = 'Variable Meta-analysis'
            fixed_summary = False

        self._find_tables(sheetname=sheetname)
        df_dict = OrderedDict()
        for title, location in self.table_locations.items():
            df, use_weight, summary = self.read_single_table(
                source_id_cell=location,
                sheetname=sheetname,
                fixed_summary=fixed_summary)
            if df.empty:  # in line with our policy of setting empty tables to None
                df_dict[title] = (None, False, (nan, nan, nan))
            else:
                df_dict[title] = (df, use_weight, summary)

        if csv_path is not None:
            idx = pd.Index(data=list(range(1,
                                           len(df_dict) + 1)),
                           name='VMA number')
            info_df = pd.DataFrame(columns=[
                'Filename', 'Title on xls', 'Has data?', 'Use weight?',
                'Fixed Mean', 'Fixed High', 'Fixed Low'
            ],
                                   index=idx)
            i = 1
            for title, values in df_dict.items():
                table = values[0]
                use_weight = values[1]
                (average, high, low) = values[2]
                path_friendly_title = to_filename(title)
                row = {
                    'Filename': path_friendly_title,
                    'Title on xls': title,
                    'Has data?': False if table is None else True,
                    'Use weight?': use_weight,
                    'Fixed Mean': average,
                    'Fixed High': high,
                    'Fixed Low': low
                }
                info_df.loc[i, :] = row
                i += 1
                if table is not None:
                    for col in optional_columns:
                        if table.loc[:, col].isnull().all():
                            table.drop(labels=col,
                                       axis='columns',
                                       inplace=True)
                    table.to_csv(os.path.join(csv_path,
                                              path_friendly_title + '.csv'),
                                 index=False)
            info_df.to_csv(os.path.join(csv_path, 'VMA_info.csv'))
        return df_dict