コード例 #1
0
    def __call__(self, img, gt):
        img, gt = random_mirror(img, gt)
        if self.config.train_scale_array is not None:
            img, gt, scale = random_scale(img, gt,
                                          self.config.train_scale_array)

        crop_size = (self.config.image_height, self.config.image_width)
        crop_pos = generate_random_crop_pos(img.shape[:2], crop_size)
        if self.augment:
            p_img, _ = random_crop_pad_to_shape(
                normalize(img, self.img_mean, self.img_std), crop_pos,
                crop_size, 0)
            p_img_k, _ = random_crop_pad_to_shape(
                normalize(np.array(self.data_transforms(Image.fromarray(img))),
                          self.img_mean, self.img_std), crop_pos, crop_size, 0)
            p_img = p_img.transpose(2, 0, 1)
            p_img_k = p_img_k.transpose(2, 0, 1)
            extra_dict = {'img_k': p_img_k}
        else:
            p_img, _ = random_crop_pad_to_shape(
                normalize(img, self.img_mean, self.img_std), crop_pos,
                crop_size, 0)
            p_img = p_img.transpose(2, 0, 1)
            extra_dict = None
        p_gt, _ = random_crop_pad_to_shape(gt, crop_pos, crop_size, 255)
        p_gt = cv2.resize(
            p_gt, (self.config.image_width // self.config.gt_down_sampling,
                   self.config.image_height // self.config.gt_down_sampling),
            interpolation=cv2.INTER_NEAREST)

        return p_img, p_gt, extra_dict
コード例 #2
0
    def process_image(self, img, resize=None, crop_size=None):
        p_img = img

        if img.shape[2] < 3:
            im_b = p_img
            im_g = p_img
            im_r = p_img
            p_img = np.concatenate((im_b, im_g, im_r), axis=2)

        if resize is not None:
            if isinstance(resize, float):
                _size = p_img.shape[:2]
                # p_img = np.array(Image.fromarray(p_img).resize((int(_size[0]*resize), int(_size[1]*resize)), Image.BILINEAR))
                p_img = np.array(Image.fromarray(p_img).resize((int(_size[1]*resize), int(_size[0]*resize)), Image.BILINEAR))
            elif isinstance(resize, tuple) or isinstance(resize, list):
                assert len(resize) == 2
                p_img = np.array(Image.fromarray(p_img).resize((int(resize[0]), int(resize[1])), Image.BILINEAR))

        p_img = normalize(p_img, self.image_mean, self.image_std)

        if crop_size is not None:
            p_img, margin = pad_image_to_shape(p_img, crop_size, cv2.BORDER_CONSTANT, value=0)
            p_img = p_img.transpose(2, 0, 1)

            return p_img, margin

        p_img = p_img.transpose(2, 0, 1)

        return p_img
コード例 #3
0
ファイル: evaluator.py プロジェクト: paul-ang/FasterSeg
    def process_image(self, img, crop_size=None):
        p_img = img

        if img.shape[2] < 3:
            im_b = p_img
            im_g = p_img
            im_r = p_img
            p_img = np.concatenate((im_b, im_g, im_r), axis=2)

        p_img = normalize(p_img, self.image_mean, self.image_std)

        if crop_size is not None:
            p_img, margin = pad_image_to_shape(p_img, crop_size, cv2.BORDER_CONSTANT, value=0)
            p_img = p_img.transpose(2, 0, 1)

            return p_img, margin

        p_img = p_img.transpose(2, 0, 1)

        return p_img
コード例 #4
0
    def __call__(self, img, gt):
        img, gt = random_mirror(img, gt)
        if self.config.train_scale_array is not None:
            img, gt, scale = random_scale(img, gt,
                                          self.config.train_scale_array)

        img = normalize(img, self.img_mean, self.img_std)

        crop_size = (self.config.image_height, self.config.image_width)
        crop_pos = generate_random_crop_pos(img.shape[:2], crop_size)
        p_img, _ = random_crop_pad_to_shape(img, crop_pos, crop_size, 0)
        p_gt, _ = random_crop_pad_to_shape(gt, crop_pos, crop_size, 255)
        p_gt = cv2.resize(
            p_gt, (self.config.image_width // self.config.gt_down_sampling,
                   self.config.image_height // self.config.gt_down_sampling),
            interpolation=cv2.INTER_NEAREST)

        p_img = p_img.transpose(2, 0, 1)

        extra_dict = None

        return p_img, p_gt, extra_dict