from nn.AnimationPlotLines import animation_plot from keras.layers import * from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import ELU from keras.models import Model from keras import backend as K from keras import objectives from keras.callbacks import EarlyStopping from keras.datasets import mnist from keras.optimizers import Nadam from tools.utils import load_locomotion rng = np.random.RandomState(23455) datasets, std, mean = load_locomotion(rng) x_train = datasets[0][0][:320] x_train = x_train.swapaxes(1, 2) print x_train.shape I = np.arange(len(x_train)) rng.shuffle(I) x_train = x_train[I] batch_size = 10 original_dim = 66*240 latent_dim = 100 intermediate_dim = 500 epsilon_std = 0.1
from nn.ActivationLayer import ActivationLayer from nn.AnimationPlotLines import animation_plot from nn.DropoutLayer import DropoutLayer from nn.Pool1DLayer import Pool1DLayer from nn.Conv1DLayer import Conv1DLayer from nn.ReshapeLayer import ReshapeLayer from nn.HiddenLayer import HiddenLayer from nn.LSTM1DLayer import LSTM1DLayer from nn.Network import Network, AutoEncodingNetwork, InverseNetwork from tools.utils import load_locomotion rng = np.random.RandomState(23455) shared = lambda d: theano.shared(d, borrow=True) dataset, std, mean = load_locomotion(rng) train_motion_dataset = dataset[0][0][:100] print "motion dataset shape = ", train_motion_dataset.shape E = shared(train_motion_dataset) BATCH_SIZE = 100 network = Network( Conv1DLayer(rng, (64, 66, 25), (BATCH_SIZE, 66, 240)), Pool1DLayer(rng, (2,), (BATCH_SIZE, 64, 240)), ActivationLayer(rng, f='elu'), Conv1DLayer(rng, (128, 64, 25), (BATCH_SIZE, 64, 120)),
from nn.DropoutLayer import DropoutLayer from nn.Pool1DLayer import Pool1DLayer from nn.Conv1DLayer import Conv1DLayer from nn.ReshapeLayer import ReshapeLayer from nn.HiddenLayer import HiddenLayer from nn.VariationalLayerUnflattened import VariationalLayer from nn.LSTM1DHiddenInitLayer import LSTM1DLayer from nn.Network import Network, AutoEncodingNetwork, InverseNetwork from tools.utils import load_locomotion from tools.utils import load_terrain rng = np.random.RandomState(23455) shared = lambda d: theano.shared(d, borrow=True) dataset1, std1, mean1 = load_locomotion(rng) dataset2, std2, mean2 = load_terrain(rng) dataset = np.concatenate([dataset1[0][0][:300], dataset2[0][0]], axis=0) train_control_dataset = dataset[:1800] train_control_dataset = train_control_dataset.swapaxes(0, 1)[-3:] train_control_dataset = train_control_dataset.swapaxes(0, 1) print "control dataset shape = ", train_control_dataset.shape E = shared(train_control_dataset) dataset1, std1, mean1 = load_locomotion(rng) dataset2, std2, mean2 = load_terrain(rng)