コード例 #1
0
    if not os.path.exists(args.test_dir1):
        json2features(input_file=args.test_file, output_files=[args.test_dir1, args.test_dir2],
                      tokenizer=tokenizer, is_training=False, repeat_limit=3, max_query_length=96,
                      max_seq_length=args.max_seq_length, doc_stride=128)
    test_examples = json.load(open(args.test_dir1, 'r'))
    test_features = json.load(open(args.test_dir2, 'r'))

    dev_steps_per_epoch = len(test_features) // args.n_batch
    if len(test_features) % args.n_batch != 0:
        dev_steps_per_epoch += 1

    # init model
    print('init model...')
    if 'albert' not in args.init_restore_dir:
        model = BertForQuestionAnswering(bert_config)
    else:
        if 'google' in args.init_restore_dir:
            model = AlbertForMRC(bert_config)
        else:
            model = ALBertForQA(bert_config, dropout_rate=args.dropout)
    utils.torch_show_all_params(model)
    utils.torch_init_model(model, args.init_restore_dir)
    if args.float16:
        model.half()
    model.to(device)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    test(model, args, test_examples, test_features, device)
コード例 #2
0
    print('init model...')
    models = {}
    all_weight = 0
    for i, p in enumerate(model_path_list):
        print(f'init model {i}...')
        print(p)
        if p.split('/')[-1].find('_bert') != -1:
            print('load bert model')
            model = BertForQuestionAnswering(bert_config)
        else:
            print('load robert model')
            model = BertForQuestionAnswering(robert_config)

        w = float(p.split('/')[-1].split('_')[0]) / 100
        # model = BertForQuestionAnswering(bert_config)
        utils.torch_init_model(model, p)
        model.to(device)
        utils.torch_show_all_params(model)
        if n_gpu > 1:
            model = torch.nn.DataParallel(model)
        all_weight += w
        models[i] = {'model': model, 'weight': w}
        print(w)
        print(f'model {i} path: {p}')
        print(f'model {i} weight {w}')

    print(f'agg {len(models)} models')
    print(f'Accumulated weight is {all_weight}')

    for i in models:
        print(i)
コード例 #3
0
def main():
    parser = argparse.ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=False,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")

    # trained_model_file
    parser.add_argument("--trained_model_dir",
                        default=None,
                        type=str,
                        help="trained model for eval or predict")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--my_tokenization",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
        "lcqmc": LcqmcProcessor,
        "sst-2": Sst2Processor,
        "text-clf": TextClfProcessor,
        "xnli": XnliProcessor
    }

    num_labels_task = {
        "cola": 2,
        "sst-2": 2,
        "mnli": 3,
        "mrpc": 2,
        "lcqmc": 2,
        "xnli": 3,
        "text-clf": 0
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval and not args.do_test:
        raise ValueError(
            "At least one of `do_train` or `do_eval(test)` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train:
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    num_labels = num_labels_task[task_name]

    label_list = processor.get_labels()
    if args.bert_model:
        tokenizer = tokenization.BertTokenizer(vocab_file=os.path.join(
            args.bert_model, 'vocab.txt'),
                                               do_lower_case=True)
    elif args.trained_model_dir:
        tokenization.BertTokenizer(vocab_file=os.path.join(
            args.trained_model_dir, 'vocab.txt'),
                                   do_lower_case=True)
    logger.info('vocab size is %d' % (len(tokenizer.vocab)))
    label_map_reverse = {}
    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        if task_name == 'text-clf':
            num_labels = len(label_list)
        label_map = {label: i for i, label in enumerate(label_list)}
        label_file = os.path.join(args.output_dir, "label_map_training.txt")
        with open(label_file, "w") as writer:
            for (k, v) in label_map.items():
                writer.write(str(k))
                writer.write('\t')
                writer.write(str(v))
                writer.write('\n')
        label_map_reverse = {v: k for k, v in label_map.items()}
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )
    else:
        train_examples = processor.get_train_examples(args.data_dir)
        label_map = {label: i for i, label in enumerate(label_list)}
        label_map_reverse = {v: k for k, v in label_map.items()}
        num_labels = len(label_list)
    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(
        str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(
            args.local_rank))
    if args.trained_model_dir:
        config = BertConfig(
            os.path.join(args.trained_model_dir, 'bert_config.json'))
        model = BertForSequenceClassification(config, num_labels=num_labels)
        model.load_state_dict(
            torch.load(
                os.path.join(args.trained_model_dir, 'pytorch_model.bin')))
        logger.info('finish trained model loading!')
    elif args.bert_model:  #
        # model = BertForSequenceClassification.from_pretrained(args.bert_model,
        #                                                       cache_dir=cache_dir,
        #                                                        num_labels=num_labels)
        print('init model...')
        bert_config = BertConfig.from_json_file(
            os.path.join(args.bert_model, 'bert_config.json'))
        model = BertForSequenceClassification(bert_config,
                                              num_labels=num_labels)
        utils.torch_show_all_params(model)
        utils.torch_init_model(
            model, os.path.join(args.bert_model, 'pytorch_model.bin'))

    if args.fp16:
        model.half()

    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples,
            label_list,
            args.max_seq_length,
            tokenizer,
            my_tokenization=args.my_tokenization)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features],
                                     dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        num_epoch = 0
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_optimization_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1
            num_epoch += 1

            ## begin to evaluate
            eval_all_result = []

            eval_examples = processor.get_dev_examples(args.data_dir)
            eval_features = convert_examples_to_features(
                eval_examples,
                label_list,
                args.max_seq_length,
                tokenizer,
                my_tokenization=args.my_tokenization)
            logger.info("***** Running  %d -th evaluation *****" % num_epoch)
            logger.info("  Num examples = %d", len(eval_examples))
            logger.info("  Batch size = %d", args.eval_batch_size)
            all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                         dtype=torch.long)
            all_input_mask = torch.tensor(
                [f.input_mask for f in eval_features], dtype=torch.long)
            all_segment_ids = torch.tensor(
                [f.segment_ids for f in eval_features], dtype=torch.long)
            all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                         dtype=torch.long)
            eval_data = TensorDataset(all_input_ids, all_input_mask,
                                      all_segment_ids, all_label_ids)
            # Run prediction for full data
            eval_sampler = SequentialSampler(eval_data)
            eval_dataloader = DataLoader(eval_data,
                                         sampler=eval_sampler,
                                         batch_size=args.eval_batch_size)

            model.eval()
            eval_loss, eval_accuracy = 0, 0
            nb_eval_steps, nb_eval_examples = 0, 0

            for input_ids, input_mask, segment_ids, label_ids in tqdm(
                    eval_dataloader, desc="Evaluating"):
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                          label_ids)
                    logits = model(input_ids, segment_ids, input_mask)

                logits = logits.detach().cpu().numpy()
                label_ids = label_ids.to('cpu').numpy()
                tmp_eval_accuracy, batch_result = accuracy(logits, label_ids)
                for i in range(input_ids.size()[0]):
                    eval_all_result.append(batch_result[i])

                eval_loss += tmp_eval_loss.mean().item()
                eval_accuracy += tmp_eval_accuracy

                nb_eval_examples += input_ids.size(0)
                nb_eval_steps += 1
            eval_loss = eval_loss / nb_eval_steps
            eval_accuracy = eval_accuracy / nb_eval_examples
            loss = tr_loss / nb_tr_steps if args.do_train else None
            result = {
                'eval_loss': eval_loss,
                'eval_accuracy': eval_accuracy,
                'global_step': global_step,
                'loss': loss
            }

            output_eval_file = os.path.join(args.output_dir,
                                            "eval_results.txt")
            epoch_eval_result_file = os.path.join(
                args.output_dir,
                str(num_epoch) + "th_epoch_eval_results.txt")
            with open(output_eval_file, "a") as writer:
                logger.info("***** %d th epoch eval results *****" % num_epoch)
                writer.write("***%d th epoch result***" % num_epoch)
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))
                    writer.write("%s = %s\n" % (key, str(result[key])))
            if num_epoch < 0:
                continue
            with open(epoch_eval_result_file, "w") as writer:
                for element in eval_all_result:
                    tokens_sample = 'Text'
                    result_sample = element
                    writer.write(str(tokens_sample))
                    writer.write('\t')
                    for ele in result_sample:
                        writer.write(label_map_reverse[ele])
                        writer.write('\t')
                    writer.write('\n')

            # Save a trained model and the associated configuration
            model_to_save = model.module if hasattr(
                model, 'module') else model  # Only save the model it-self
            output_model_file = os.path.join(
                args.output_dir, WEIGHTS_NAME + '.ep' + str(num_epoch))
            torch.save(model_to_save.state_dict(), output_model_file)
            output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
            with open(output_config_file, 'w') as f:
                f.write(model_to_save.config.to_json_string())

    model.to(device)
    logger.info('%s' % str(args.do_eval))
    if args.do_eval and (args.local_rank == -1
                         or torch.distributed.get_rank() == 0):
        eval_all_result = []

        stime = datetime.datetime.now()
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples,
            label_list,
            args.max_seq_length,
            tokenizer,
            my_tokenization=args.my_tokenization)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy, batch_result = accuracy(logits, label_ids)
            for i in range(input_ids.size()[0]):
                eval_all_result.append(batch_result[i])

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': loss
        }

        output_eval_file = os.path.join(args.output_dir, "eval_metrics.txt")
        eval_result_file = os.path.join(args.output_dir,
                                        "eval_all_results.txt")
        with open(output_eval_file, "a") as writer:
            logger.info("***** Final Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
        etime = datetime.datetime.now()
        logger.info('eval precoess cost time: %s' % str(etime - stime))
        with open(eval_result_file, "w") as writer:
            logger.info("***** eval_all_results *****")
            for element in eval_all_result:
                tokens_sample = 'Text'
                result_sample = element
                writer.write(str(tokens_sample))
                writer.write('\t')
                for ele in result_sample:
                    writer.write(label_map_reverse[ele])
                    writer.write('\t')
                writer.write('\n')
    if args.do_test:
        eval_all_result = []
        eval_examples = processor.get_test_examples(args.data_dir)
        eval_features = convert_examples_to_features(eval_examples, label_list,
                                                     args.max_seq_length,
                                                     tokenizer)
        logger.info("***** Running testing *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features],
                                     dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0

        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask,
                                      label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy, batch_result = accuracy(logits, label_ids)
            for i in range(input_ids.size()[0]):
                eval_all_result.append(batch_result[i])

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
        loss = tr_loss / nb_tr_steps if args.do_train else None
        result = {
            'eval_loss': eval_loss,
            'eval_accuracy': eval_accuracy,
            'global_step': global_step,
            'loss': loss
        }
        output_test_file = os.path.join(args.output_dir, "test_results.txt")
        test_metric_file = os.path.join(args.output_dir, "test_metric.txt")
        with open(test_metric_file, "w") as writer:
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
        with open(output_test_file, "w") as writer:
            for element in eval_all_result:
                result_sample = element
                for ele in result_sample:
                    writer.write(str(ele))
                    writer.write('\t')
                writer.write('\n')
コード例 #4
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--gpu_ids", default='0', type=str, required=True)
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--task_name", default='c3', type=str, required=True)
    parser.add_argument(
        "--bert_config_file",
        default=None,
        type=str,
        required=True,
        help=
        "The config json file corresponding to the pre-trained BERT model. \n"
        "This specifies the model architecture.")
    parser.add_argument(
        "--vocab_file",
        default=None,
        type=str,
        required=True,
        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument(
        "--init_checkpoint",
        default=
        'check_points/pretrain_models/albert_xxlarge_google_zh_v1121/pytorch_model.pth',
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument(
        "--max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--schedule",
                        default='warmup_linear',
                        type=str,
                        help='schedule')
    parser.add_argument("--weight_decay_rate",
                        default=0.01,
                        type=float,
                        help='weight_decay_rate')
    parser.add_argument('--clip_norm', type=float, default=1.0)
    parser.add_argument("--num_train_epochs",
                        default=8.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--float16', action='store_true', default=False)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=422,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument('--setting_file', type=str, default='setting.txt')
    parser.add_argument('--log_file', type=str, default='log.txt')

    args = parser.parse_args()
    args.setting_file = os.path.join(args.output_dir, args.setting_file)
    args.log_file = os.path.join(args.output_dir, args.log_file)
    os.makedirs(args.output_dir, exist_ok=True)
    with open(args.setting_file, 'wt') as opt_file:
        opt_file.write('------------ Options -------------\n')
        print('------------ Options -------------')
        for k in args.__dict__:
            v = args.__dict__[k]
            opt_file.write('%s: %s\n' % (str(k), str(v)))
            print('%s: %s' % (str(k), str(v)))
        opt_file.write('-------------- End ----------------\n')
        print('------------ End -------------')
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids

    if os.path.exists(args.log_file):
        os.remove(args.log_file)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError(
            "At least one of `do_train` or `do_eval` must be True.")

    processor = c3Processor(args.data_dir)
    label_list = processor.get_labels()

    tokenizer = tokenization.BertTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples()
        num_train_steps = int(
            len(train_examples) / n_class / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    if 'albert' in args.bert_config_file:
        if 'google' in args.bert_config_file:
            bert_config = AlbertConfig.from_json_file(args.bert_config_file)
            model = AlbertForMultipleChoice(bert_config, num_choices=n_class)
        else:
            bert_config = ALBertConfig.from_json_file(args.bert_config_file)
            model = ALBertForMultipleChoice(bert_config, num_choices=n_class)
    else:
        bert_config = BertConfig.from_json_file(args.bert_config_file)
        model = BertForMultipleChoice(bert_config, num_choices=n_class)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}"
            .format(args.max_seq_length, bert_config.max_position_embeddings))

    if args.init_checkpoint is not None:
        utils.torch_show_all_params(model)
        utils.torch_init_model(model, args.init_checkpoint)
    if args.float16:
        model.half()
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    optimizer = get_optimization(
        model=model,
        float16=args.float16,
        learning_rate=args.learning_rate,
        total_steps=num_train_steps,
        schedule=args.schedule,
        warmup_rate=args.warmup_proportion,
        max_grad_norm=args.clip_norm,
        weight_decay_rate=args.weight_decay_rate,
        opt_pooler=True)  # multi_choice must update pooler

    global_step = 0
    eval_dataloader = None
    if args.do_eval:
        eval_examples = processor.get_dev_examples()
        feature_dir = os.path.join(
            args.data_dir, 'dev_features{}.pkl'.format(args.max_seq_length))
        if os.path.exists(feature_dir):
            eval_features = pickle.load(open(feature_dir, 'rb'))
        else:
            eval_features = convert_examples_to_features(
                eval_examples, label_list, args.max_seq_length, tokenizer)
            with open(feature_dir, 'wb') as w:
                pickle.dump(eval_features, w)

        input_ids = []
        input_mask = []
        segment_ids = []
        label_id = []

        for f in eval_features:
            input_ids.append([])
            input_mask.append([])
            segment_ids.append([])
            for i in range(n_class):
                input_ids[-1].append(f[i].input_ids)
                input_mask[-1].append(f[i].input_mask)
                segment_ids[-1].append(f[i].segment_ids)
            label_id.append(f[0].label_id)

        all_input_ids = torch.tensor(input_ids, dtype=torch.long)
        all_input_mask = torch.tensor(input_mask, dtype=torch.long)
        all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
        all_label_ids = torch.tensor(label_id, dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.eval_batch_size)

    if args.do_train:
        best_accuracy = 0

        feature_dir = os.path.join(
            args.data_dir, 'train_features{}.pkl'.format(args.max_seq_length))
        if os.path.exists(feature_dir):
            train_features = pickle.load(open(feature_dir, 'rb'))
        else:
            train_features = convert_examples_to_features(
                train_examples, label_list, args.max_seq_length, tokenizer)
            with open(feature_dir, 'wb') as w:
                pickle.dump(train_features, w)

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        input_ids = []
        input_mask = []
        segment_ids = []
        label_id = []
        for f in train_features:
            input_ids.append([])
            input_mask.append([])
            segment_ids.append([])
            for i in range(n_class):
                input_ids[-1].append(f[i].input_ids)
                input_mask[-1].append(f[i].input_mask)
                segment_ids[-1].append(f[i].segment_ids)
            label_id.append(f[0].label_id)

        all_input_ids = torch.tensor(input_ids, dtype=torch.long)
        all_input_mask = torch.tensor(input_mask, dtype=torch.long)
        all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
        all_label_ids = torch.tensor(label_id, dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size,
                                      drop_last=True)
        steps_per_epoch = int(num_train_steps / args.num_train_epochs)

        for ie in range(int(args.num_train_epochs)):
            model.train()
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            with tqdm(total=int(steps_per_epoch),
                      desc='Epoch %d' % (ie + 1)) as pbar:
                for step, batch in enumerate(train_dataloader):
                    batch = tuple(t.to(device) for t in batch)
                    input_ids, input_mask, segment_ids, label_ids = batch
                    loss = model(input_ids, segment_ids, input_mask, label_ids)
                    if n_gpu > 1:
                        loss = loss.mean()  # mean() to average on multi-gpu.
                    if args.gradient_accumulation_steps > 1:
                        loss = loss / args.gradient_accumulation_steps
                    tr_loss += loss.item()

                    if args.float16:
                        optimizer.backward(loss)
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used and handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear(
                            global_step / num_train_steps,
                            args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    else:
                        loss.backward()

                    nb_tr_examples += input_ids.size(0)
                    if (step + 1) % args.gradient_accumulation_steps == 0:
                        optimizer.step(
                        )  # We have accumulated enought gradients
                        model.zero_grad()
                        global_step += 1
                        nb_tr_steps += 1
                        pbar.set_postfix({
                            'loss':
                            '{0:1.5f}'.format(tr_loss / (nb_tr_steps + 1e-5))
                        })
                        pbar.update(1)

            if args.do_eval:
                model.eval()
                eval_loss, eval_accuracy = 0, 0
                nb_eval_steps, nb_eval_examples = 0, 0
                logits_all = []
                for input_ids, input_mask, segment_ids, label_ids in tqdm(
                        eval_dataloader):
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        tmp_eval_loss, logits = model(input_ids,
                                                      segment_ids,
                                                      input_mask,
                                                      label_ids,
                                                      return_logits=True)

                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.cpu().numpy()
                    for i in range(len(logits)):
                        logits_all += [logits[i]]

                    tmp_eval_accuracy = accuracy(logits, label_ids.reshape(-1))

                    eval_loss += tmp_eval_loss.mean().item()
                    eval_accuracy += tmp_eval_accuracy

                    nb_eval_examples += input_ids.size(0)
                    nb_eval_steps += 1

                eval_loss = eval_loss / nb_eval_steps
                eval_accuracy = eval_accuracy / nb_eval_examples

                if args.do_train:
                    result = {
                        'eval_loss': eval_loss,
                        'eval_accuracy': eval_accuracy,
                        'global_step': global_step,
                        'loss': tr_loss / nb_tr_steps
                    }
                else:
                    result = {
                        'eval_loss': eval_loss,
                        'eval_accuracy': eval_accuracy
                    }

                logger.info("***** Eval results *****")
                for key in sorted(result.keys()):
                    logger.info("  %s = %s", key, str(result[key]))

                with open(args.log_file, 'a') as aw:
                    aw.write(
                        "-------------------global steps:{}-------------------\n"
                        .format(global_step))
                    aw.write(str(json.dumps(result, indent=2)) + '\n')

                if eval_accuracy >= best_accuracy:
                    torch.save(model.state_dict(),
                               os.path.join(args.output_dir, "model_best.pt"))
                    best_accuracy = eval_accuracy

        model.load_state_dict(
            torch.load(os.path.join(args.output_dir, "model_best.pt")))
        torch.save(model.state_dict(), os.path.join(args.output_dir,
                                                    "model.pt"))

    model.load_state_dict(torch.load(os.path.join(args.output_dir,
                                                  "model.pt")))

    if args.do_eval:
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        logits_all = []
        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                eval_dataloader):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss, logits = model(input_ids,
                                              segment_ids,
                                              input_mask,
                                              label_ids,
                                              return_logits=True)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.cpu().numpy()
            for i in range(len(logits)):
                logits_all += [logits[i]]

            tmp_eval_accuracy = accuracy(logits, label_ids.reshape(-1))

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy}

        output_eval_file = os.path.join(args.output_dir, "results_dev.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
        output_eval_file = os.path.join(args.output_dir, "logits_dev.txt")
        with open(output_eval_file, "w") as f:
            for i in range(len(logits_all)):
                for j in range(len(logits_all[i])):
                    f.write(str(logits_all[i][j]))
                    if j == len(logits_all[i]) - 1:
                        f.write("\n")
                    else:
                        f.write(" ")

        test_examples = processor.get_test_examples()
        feature_dir = os.path.join(
            args.data_dir, 'test_features{}.pkl'.format(args.max_seq_length))
        if os.path.exists(feature_dir):
            test_features = pickle.load(open(feature_dir, 'rb'))
        else:
            test_features = convert_examples_to_features(
                test_examples, label_list, args.max_seq_length, tokenizer)
            with open(feature_dir, 'wb') as w:
                pickle.dump(test_features, w)

        logger.info("***** Running testing *****")
        logger.info("  Num examples = %d", len(test_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)

        input_ids = []
        input_mask = []
        segment_ids = []
        label_id = []

        for f in test_features:
            input_ids.append([])
            input_mask.append([])
            segment_ids.append([])
            for i in range(n_class):
                input_ids[-1].append(f[i].input_ids)
                input_mask[-1].append(f[i].input_mask)
                segment_ids[-1].append(f[i].segment_ids)
            label_id.append(f[0].label_id)

        all_input_ids = torch.tensor(input_ids, dtype=torch.long)
        all_input_mask = torch.tensor(input_mask, dtype=torch.long)
        all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
        all_label_ids = torch.tensor(label_id, dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            test_sampler = SequentialSampler(test_data)
        else:
            test_sampler = DistributedSampler(test_data)
        test_dataloader = DataLoader(test_data,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)

        model.eval()
        test_loss, test_accuracy = 0, 0
        nb_test_steps, nb_test_examples = 0, 0
        logits_all = []
        for input_ids, input_mask, segment_ids, label_ids in tqdm(
                test_dataloader):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_test_loss, logits = model(input_ids,
                                              segment_ids,
                                              input_mask,
                                              label_ids,
                                              return_logits=True)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            for i in range(len(logits)):
                logits_all += [logits[i]]

            tmp_test_accuracy = accuracy(logits, label_ids.reshape(-1))

            test_loss += tmp_test_loss.mean().item()
            test_accuracy += tmp_test_accuracy

            nb_test_examples += input_ids.size(0)
            nb_test_steps += 1

        test_loss = test_loss / nb_test_steps
        test_accuracy = test_accuracy / nb_test_examples

        result = {'test_loss': test_loss, 'test_accuracy': test_accuracy}

        output_test_file = os.path.join(args.output_dir, "results_test.txt")
        with open(output_test_file, "w") as writer:
            logger.info("***** Test results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))
        output_test_file = os.path.join(args.output_dir, "logits_test.txt")
        with open(output_test_file, "w") as f:
            for i in range(len(logits_all)):
                for j in range(len(logits_all[i])):
                    f.write(str(logits_all[i][j]))
                    if j == len(logits_all[i]) - 1:
                        f.write("\n")
                    else:
                        f.write(" ")

        # the test submission order can't be changed
        submission_test = os.path.join(args.output_dir, "submission_test.json")
        test_preds = [int(np.argmax(logits_)) for logits_ in logits_all]
        with open(submission_test, "w") as f:
            json.dump(test_preds, f)