コード例 #1
0
    def test_is_valley_free_false(self):
        peerup = [0, 5, 6, 4]  # DPU
        peerpeer = [0, 5, 6, 5, 1]  # UPPD
        downpeer = [4, 6, 5, 0]  # DPD
        downup = [4, 5, 4]  # DU

        self.assertFalse(vft.is_valley_free(self.sample_graph, peerup))
        self.assertFalse(vft.is_valley_free(self.sample_graph, peerpeer))
        self.assertFalse(vft.is_valley_free(self.sample_graph, downpeer))
        self.assertFalse(vft.is_valley_free(self.sample_graph, downup))
コード例 #2
0
ファイル: filter.py プロジェクト: csomaati/netform
def filter(g,
           traceroutes,
           filters=['sh', 'loop', 'ex', 'vf', 'lp'],
           first_edge=True):

    logger.info('Traceroutes: %d', len(traceroutes))
    # remove empty traces
    traceroutes = [x for x in traceroutes if len(x) > 0]
    logger.info('Non empty traceroutes: %d', (len(traceroutes)))
    traceroutes = [x for x in traceroutes if len(x) > 1]
    logger.info('Larger than one hop traceroutes: %d', (len(traceroutes)))
    # remove traces with unknown nodes
    traceroutes, _ = vft.trace_clean(g, traceroutes)
    logger.info('Ignored: %d', _)
    traceroutes = vft.trace_in_vertex_id(g, traceroutes)
    logger.info('Trace count: %d', len(traceroutes))
    progress = progressbar1.AnimatedProgressBar(end=len(traceroutes), width=15)

    good_traceroutes = traceroutes[:]
    if 'sh' in filters:
        logger.debug('Remove short traces')
        good_traceroutes = [x for x in good_traceroutes if len(x) >= 3]
        logger.debug('Remained: %d', len(good_traceroutes))

    if 'loop' in filters:
        logger.debug('Remove traces with loops')
        good_traceroutes = [
            x for x in good_traceroutes if len(set(x)) == len(x)
        ]
        logger.debug('Remained: %d' % len(good_traceroutes))

    if 'ex' in filters:
        logger.debug('Remove non existent traces')
        good_traceroutes = [
            x for x in good_traceroutes if vft.trace_exists(g, x)
        ]
        logger.debug('Remained: %d', len(good_traceroutes))

    if 'vf' in filters:
        logger.debug('Remove non vf traces')
        good_traceroutes = [
            x for x in good_traceroutes if vft.is_valley_free(g, x)
        ]
        logger.debug('Remained: %d' % len(good_traceroutes))

    if 'lp' in filters:
        logger.debug('Remove non lp traces')
        good_traceroutes = [
            x for x in good_traceroutes
            if vft.is_local_preferenced(g, x, first_edge=first_edge)
        ]
        logger.debug('Remained: %d' % len(good_traceroutes))

    # convert back node ids to node names

    good_traceroutes = [[g.vs[id]["name"] for id in trace]
                        for trace in good_traceroutes]
    logger.debug(len(good_traceroutes))

    return good_traceroutes
コード例 #3
0
def ba_generator(ba_graph, sh_paths, stretch, vf_g, progressbar=False):
    vf_count = 0
    trace_count = 0
    lp_count = 0
    progress = progressbar1.DummyProgressBar(end=10, width=15)

    if progressbar:
        progress = progressbar1.AnimatedProgressBar(end=len(sh_paths),
                                                    width=15)
    for (s, t), shl in sh_paths:
        progress += 1
        progress.show_progress()
        logger.debug('SH from %s to %s is %d' % (s, t, shl))
        random_route = helpers.random_route_walk(ba_graph, s, t, shl + stretch)
        logger.debug('Random route: %s' % random_route)
        real_stretch = len(random_route) - shl

        if real_stretch != stretch:
            continue

        trace_count += 1

        is_vf = vft.is_valley_free(ba_graph,
                                   random_route,
                                   vfmode=vft.CLOSENESS)
        logger.debug(
            'Trace edge dir: %s' %
            vft.trace_to_string(ba_graph, random_route, vfmode=vft.CLOSENESS))
        logger.debug('Is VF: %s' % is_vf)
        if is_vf:
            is_lp = vft.is_local_preferenced(ba_graph,
                                             random_route,
                                             first_edge=True,
                                             vfmode=vft.CLOSENESS,
                                             vf_g=vf_g)
        else:
            is_lp = 0
        logger.debug('Is LP: %s' % is_lp)

        vf_count += int(is_vf)
        lp_count += int(is_lp)

    logger.info('Stretch %d' % stretch)
    logger.info('Trace count: %d' % trace_count)
    logger.info('VF count: %d' % vf_count)
    logger.info('LP count: %d' % lp_count)

    return (stretch, trace_count, vf_count, lp_count)
コード例 #4
0
    def test_is_valley_free_true(self):
        simple_vf = [0, 5, 4, 6, 2]  # UUDD - vf
        middle_peer_vf = [0, 5, 6, 2]  # UPD - vf
        just_down = [4, 6, 3]  # DD - vf
        just_up = [1, 5, 4]  # UU - vf
        start_peer = [5, 6, 3]  # PD - vf
        just_peer = [5, 6]  # P - vf

        self.assertTrue(vft.is_valley_free(self.sample_graph, simple_vf))
        self.assertTrue(vft.is_valley_free(self.sample_graph, middle_peer_vf))
        self.assertTrue(vft.is_valley_free(self.sample_graph, just_down))
        self.assertTrue(vft.is_valley_free(self.sample_graph, just_up))
        self.assertTrue(vft.is_valley_free(self.sample_graph, start_peer))
        self.assertTrue(vft.is_valley_free(self.sample_graph, just_peer))
コード例 #5
0
def vf_attributes(g, trace, vfmode, get_lp_soft, get_lp_hard, vf_g=None):
    is_vf = int(vft.is_valley_free(g, trace, vfmode))
    is_lp_soft = -1
    is_lp_hard = -1
    if is_vf:
        if get_lp_soft:
            lp_soft = vft.is_local_preferenced(g, trace,
                                               vf_g=vf_g,
                                               first_edge=True,
                                               vfmode=vfmode)
            is_lp_soft = int(lp_soft)
        else:
            is_lp_prelabeled_soft = -1

        if get_lp_hard:
            lp_hard = vft.is_local_preferenced(g, trace,
                                               vf_g=vf_g,
                                               first_edge=False,
                                               vfmode=vfmode)
            is_lp_hard = int(lp_hard)
        else:
            is_lp_hard = -1

    return (is_vf, is_lp_soft, is_lp_hard)
コード例 #6
0
ファイル: sandbox.py プロジェクト: csomaati/netform
def purify(g, meta, out, count=1000):
    results = list()
    results2 = list()
    results3 = list()
    all_vf = 0
    all_nonvf = 0
    all_vf_closeness = 0
    all_nonvf_closeness = 0

    short_results = list()
    short_results2 = list()
    short_results3 = list()
    all_short_vf = 0
    all_short_nonvf = 0
    all_short_vf_closeness = 0
    all_short_nonvf_closeness = 0

    long_results = list()
    long_results2 = list()
    long_results3 = list()
    all_long_vf = 0
    all_long_nonvf = 0
    all_long_vf_closeness = 0
    all_long_nonvf_closeness = 0

    # remove traces with already calculated all_path
    logger.warn('[r]ONLY NOT FILLED PATHS[/]')
    meta = [x for x in meta if not helpers.ALL_PATH_COUNT in x]

    # traces with a maximum stretch
    logger.warn('[r]!!!ONLY WITH LOW STRETCH[/]')
    meta = [x for x in meta if x[helpers.STRETCH] < 4]

    # shorter meta records
    logger.warn('[r]!!!ONLY SHORT TRACES[/]')
    meta = [x for x in meta if len(x[helpers.TRACE]) < 5]

    meta_map = {tuple(x[helpers.TRACE]): x for x in meta}

    # traceroutes = [x for x in meta if x[TRACE_LEN] == x[SH_LEN]]
    logger.info('All trace count: %d' % len(meta))
    tr_count = min(len(meta), count)
    meta = random.sample(meta, tr_count)
    logger.info('Chosen trace count: %d' % len(meta))

    real_vf = [x for x in meta if x[helpers.IS_VF] == 1]
    real_nonvf = [x for x in meta if x[helpers.IS_VF] == 0]

    real_vf_closeness = [x for x in meta if x[helpers.IS_VF_CLOSENESS] == 1]
    real_nonvf_closeness = [x for x in meta if x[helpers.IS_VF_CLOSENESS] == 0]

    logger.info('Real vf: %f[%d]' % ((len(real_vf)/float(len(meta)), len(real_vf))))
    logger.info('Real nonvf: %f[%d]' % ((len(real_nonvf)/float(len(meta)), len(real_nonvf))))

    logger.info('Real vf closeness: %f[%d]' % ((len(real_vf_closeness)/float(len(meta)), len(real_vf_closeness))))
    logger.info('Real nonvf closeness: %f[%d]' % ((len(real_nonvf_closeness)/float(len(meta)), len(real_nonvf_closeness))))

    logger.info('Remove unknown traces. Trace count before: %d' % len(meta))
    traceroutes = [x[helpers.TRACE] for x in meta]
    traceroutes, ignored = vft.trace_clean(g, traceroutes)
    logger.info('Traceroutes after: %d. Ignored: %d' % (len(traceroutes), ignored))

    traceroutes = vft.trace_in_vertex_id(g, traceroutes)

    progress = progressbar1.AnimatedProgressBar(end=len(traceroutes), width=15)
    for trace in traceroutes:
        progress += 1
        progress.show_progress()

        for x in range(0, g.vcount()):
            g.vs[x]['traces'] = dict()

        s, t = trace[0], trace[-1]
        sh_path = g.get_all_shortest_paths(s, t, mode=i.OUT)
        all_path = helpers.dfs_mark(copy.deepcopy(g), s, t, len(trace))

        # if len(sh_path) != len(all_path):
        #     print len(sh_path)
        #     print len(all_path)
        #     print s, t

        # sanity check
        for x in all_path:
            if x[0] != s or x[-1] != t:
                logger.error('ALERT')
        if len(set([tuple(x) for x in all_path])) != len(all_path):
            logger.error('LENGTH ALERT')
            logger.error('%s' % len(all_path))
            logger.error('%s' % len(set([tuple(x) for x in all_path])))
            logger.error('%s' % sorted(all_path))

        long_path = [x for x in all_path if len(x) == len(trace)]
        short_path = [x for x in all_path if len(x) < len(trace)]

        named_trace = [g.vs[x]['name'] for x in trace]
        extra_meta = {
            helpers.ALL_PATH_COUNT: len(all_path),
            helpers.SAME_LONG_PATH_COUNT: len(long_path),
            helpers.SHORTER_PATH_COUNT: len(short_path)
        }
        meta_map[tuple(named_trace)].update(extra_meta)

        vf_count = sum([1 if vft.is_valley_free(g, x, vfmode=vft.PRELABELED) else 0 for x in all_path])
        nonvf = len(all_path) - vf_count

        vf_closeness_count = sum([1 if vft.is_valley_free(g, x, vfmode=vft.CLOSENESS) else 0 for x in all_path])
        nonvf_closeness = len(all_path) - vf_closeness_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.PRELABELED) else 0 for x in short_path]
        short_vf_count = sum(tmp)
        short_nonvf = len(tmp) - short_vf_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.CLOSENESS) else 0 for x in short_path]
        short_vf_closeness_count = sum(tmp)
        short_nonvf_closeness = len(tmp) - short_vf_closeness_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.PRELABELED) else 0 for x in long_path]
        long_vf_count = sum(tmp)
        long_nonvf = len(tmp) - long_vf_count

        tmp = [1 if vft.is_valley_free(g, x, vfmode=vft.CLOSENESS) else 0 for x in long_path]
        long_vf_closeness_count = sum(tmp)
        long_nonvf_closeness = len(tmp) - long_vf_closeness_count

        extra_meta = {
            helpers.ALL_PATH_VF_COUNT: vf_closeness_count,
            helpers.SAME_LONG_PATH_VF_COUNT: long_vf_closeness_count,
            helpers.SHORTER_PATH_VF_COUNT: short_vf_closeness_count
        }
        meta_map[tuple(named_trace)].update(extra_meta)

        all_vf += vf_count
        all_nonvf += nonvf

        all_vf_closeness += vf_closeness_count
        all_nonvf_closeness += nonvf_closeness

        all_long_vf += long_vf_count
        all_long_nonvf += long_nonvf

        all_long_vf_closeness += long_vf_closeness_count
        all_long_nonvf_closeness += long_nonvf_closeness

        all_short_vf += short_vf_count
        all_short_nonvf += short_nonvf

        all_short_vf_closeness += short_vf_closeness_count
        all_short_nonvf_closeness += short_nonvf_closeness

        results.append(vf_count / float(len(all_path)))
        results3.append(vf_closeness_count / float(len(all_path)))
        if len(all_path) > 1: results2.append(vf_count / float(len(all_path)))

        long_results.append(long_vf_count / float(len(long_path)))
        long_results3.append(long_vf_closeness_count / float(len(long_path)))
        if len(long_path) > 1: long_results2.append(long_vf_count / float(len(long_path)))

        if len(short_path) > 0:
            short_results.append(short_vf_count / float(len(short_path)))
            short_results3.append(short_vf_closeness_count / float(len(short_path)))
        else:
            pass
            # short_results.append(0)
            # short_results3.append(0)
        if len(short_path) > 1: short_results2.append(short_vf_count / float(len(short_path)))

    # save mofified meta
    meta_mod = [x for x in meta_map.itervalues()]
    helpers.save_to_json(out, meta_mod)

    # print results
    print 'ALL'
    print 'VF count: %d' % all_vf
    print 'VF CLOSENESS count: %d' % all_vf_closeness
    print 'Non vf count: %d' % all_nonvf
    print 'Non vf CLOSENESS count: %d' % all_nonvf_closeness
    print 'VF perc: %f' % (all_vf/float(all_vf + all_nonvf))
    print 'VF CLOSENESS perc: %f' % (all_vf_closeness/float(all_vf_closeness + all_nonvf_closeness))
    print 'Mean VF prob: %f' % np.mean(results)
    print 'Mean VF CLOSENESS prob: %f' % np.mean(results3)
    print 'Mean VF2 prob: %f' % np.mean(results2)
    print '=========='
    print 'SHORT'
    print 'VF count: %d' % all_short_vf
    print 'VF  CLOSENESS count: %d' % all_short_vf_closeness
    print 'Non vf count: %d' % all_short_nonvf
    print 'Non vf CLOSENESS count: %d' % all_short_nonvf_closeness
    if all_short_vf + all_short_nonvf > 0:
        print 'VF perc: %f' % (all_short_vf/float(all_short_vf + all_short_nonvf))
    if all_short_vf_closeness + all_short_nonvf_closeness > 0:
        print 'VF CLOSENESS perc: %f' % (all_short_vf_closeness/float(all_short_vf_closeness + all_short_nonvf_closeness))
    print 'Mean VF prob: %f' % np.mean(short_results)
    print 'Mean VF CLOSENESS prob: %f' % np.mean(short_results3)
    print 'Mean VF2 prob: %f' % np.mean(short_results2)
    print '=-----------------'
    print 'LONG'
    print 'VF count: %d' % all_long_vf
    print 'VF CLOSENESS count: %d' % all_long_vf_closeness
    print 'Non vf count: %d' % all_long_nonvf
    print 'Non vf CLOSENESS count: %d' % all_long_nonvf_closeness
    print 'VF perc: %f' % (all_long_vf/float(all_long_vf + all_long_nonvf))
    print 'VF CLOSENESS perc: %f' % (all_long_vf_closeness/float(all_long_vf_closeness + all_long_nonvf_closeness))
    print 'Mean VF prob: %f' % np.mean(long_results)
    print 'Mean VF CLOSENESS prob: %f' % np.mean(long_results3)
    print 'Mean VF2 prob: %f' % np.mean(long_results2)
コード例 #7
0
def purify(labeled_g, out, network_path, extra_hop=0):
    vs = [x.index for x in labeled_g.vs]

    ## Jus like in R

    # print '================'
    # for x in orig_vs:
    #     shp = labeled_g.get_all_shortest_paths(x, orig_vs, mode=i.ALL)
    #     res = []
    #     mes = 0
    #     for p in shp:
    #         mes += 1
    #         # print [labeled_g.vs[u]['name'] for u in p]
    #         vf_indicator = 1 if vft.is_valley_free(labeled_g, p) else 0
    #         # if vf_indicator == 0:
    #             # print [labeled_g.vs[u]['name'] for u in [p[0], p[-1]]]
    #             # print [labeled_g.degree(u) for u in p]
    #             # print vft.trace_to_string(labeled_g, p)
    #         # print vf_indicator == 1
    #         res.append(vf_indicator)
    #         # raw_input()
    #     # print mes
    #     print np.mean(res)

    # raw_input()

    # print '///////////////////////////'
    pairs = random_pairs(vs, NODE_PAIRS)
    print 'Random pairs: %d' % len(pairs)

    probed_pairs = 0

    all_vf = 0
    all_nonvf = 0
    all_vf_closeness = 0
    all_nonvf_closeness = 0
    results = []
    results2 = []
    results3 = []

    short_results = list()
    short_results2 = list()
    short_results3 = list()
    all_short_vf = 0
    all_short_nonvf = 0
    all_short_vf_closeness = 0
    all_short_nonvf_closeness = 0

    long_results = list()
    long_results2 = list()
    long_results3 = list()
    all_long_vf = 0
    all_long_nonvf = 0
    all_long_vf_closeness = 0
    all_long_nonvf_closeness = 0

    results_closeness = []
    results3_closeness = []
    progress = progressbar1.AnimatedProgressBar(end=len(pairs), width=15)
    for s, t in pairs:
        progress += 1
        progress.show_progress()
        for x in range(0, labeled_g.vcount()):
            labeled_g.vs[x]['traces'] = dict()

        # all_path = labeled_g.get_all_shortest_paths(s, t, mode=i.ALL)
        sh_len = labeled_g.shortest_paths(s, t, mode=i.ALL)[0][0]
        sh_len += 1  # convert to hop count
        all_path = helpers.dfs_mark(copy.deepcopy(labeled_g), s, t,
                                    sh_len + extra_hop)
        if all_path is None or len(all_path) < 1:
            print 'No path between %s %s' % (s, t)
            continue
        probed_pairs += 1
        vf_indicator = [
            1 if vft.is_valley_free(labeled_g, x) else 0 for x in all_path
        ]
        vf_closeness_indicator = [
            1 if vft.is_valley_free(labeled_g, x, vfmode=vft.ORDER_CLOSENESS)
            else 0 for x in all_path
        ]
        vf_count = sum(vf_indicator)
        vf_closeness_count = sum(vf_closeness_indicator)
        nonvf = len(all_path) - vf_count
        nonvf_closeness = len(all_path) - vf_closeness_count

        all_vf += vf_count
        all_nonvf += nonvf

        all_vf_closeness += vf_closeness_count
        all_nonvf_closeness += nonvf_closeness

        long_path = [x for x in all_path if len(x) == sh_len + extra_hop]
        short_path = [x for x in all_path if len(x) < sh_len + extra_hop]

        tmp = [
            1 if vft.is_valley_free(labeled_g, x, vfmode=vft.ORDER_PRELABELED)
            else 0 for x in all_path if len(x) < sh_len + extra_hop
        ]
        short_vf_count = sum(tmp)
        short_nonvf = len(tmp) - short_vf_count

        tmp = [
            1 if vft.is_valley_free(labeled_g, x, vfmode=vft.ORDER_CLOSENESS)
            else 0 for x in all_path if len(x) < sh_len + extra_hop
        ]
        short_vf_closeness_count = sum(tmp)
        short_nonvf_closeness = len(tmp) - short_vf_closeness_count

        tmp = [
            1 if vft.is_valley_free(labeled_g, x, vfmode=vft.ORDER_PRELABELED)
            else 0 for x in all_path if len(x) >= sh_len + extra_hop
        ]
        long_vf_count = sum(tmp)
        long_nonvf = len(tmp) - long_vf_count

        tmp = [
            1 if vft.is_valley_free(labeled_g, x, vfmode=vft.ORDER_CLOSENESS)
            else 0 for x in all_path if len(x) >= sh_len + extra_hop
        ]
        long_vf_closeness_count = sum(tmp)
        long_nonvf_closeness = len(tmp) - long_vf_closeness_count

        if len(all_path) > 0:
            results.append(vf_count / float(len(all_path)))
            results_closeness.append(vf_closeness_count / float(len(all_path)))
        else:
            results.append(0)
            results_closeness.append(0)

        results3.append([vf_count, nonvf])
        results3_closeness.append([vf_closeness_count, nonvf_closeness])

        if len(all_path) > 1: results2.append(vf_count / float(len(all_path)))

        all_long_vf += long_vf_count
        all_long_nonvf += long_nonvf

        all_long_vf_closeness += long_vf_closeness_count
        all_long_nonvf_closeness += long_nonvf_closeness

        all_short_vf += short_vf_count
        all_short_nonvf += short_nonvf

        all_short_vf_closeness += short_vf_closeness_count
        all_short_nonvf_closeness += short_nonvf_closeness

        if len(long_path) > 0:
            long_results.append(long_vf_count / float(len(long_path)))
            long_results3.append(long_vf_closeness_count /
                                 float(len(long_path)))
        else:
            long_results.append(0)
            long_results3.append(0)

        if len(long_path) > 1:
            long_results2.append(long_vf_count / float(len(long_path)))

        if len(short_path) > 0:
            short_results.append(short_vf_count / float(len(short_path)))
            short_results3.append(short_vf_closeness_count /
                                  float(len(short_path)))
        else:
            short_results.append(0)
            short_results3.append(0)

    print

    with open(out, 'w') as f:
        f.write('%s\n' % network_path)
        f.write('Probed pairs: %d\n' % probed_pairs)
        f.write('VF count: %d\n' % all_vf)
        f.write('Non vf count: %d\n' % all_nonvf)
        f.write('VF perc: %f\n' % (all_vf / float(all_vf + all_nonvf)))
        f.write('Mean VF prob: %f\n' % np.mean(results))
        f.write('Mean VF2 prob: %f\n' % np.mean(results2))

        f.write('\n')
        f.write('VF CLOSENESS count: %d\n' % all_vf_closeness)
        f.write('Non vf CLOSENESS count: %d\n' % all_nonvf_closeness)
        f.write(
            'VF CLOSENESS perc: %f\n' %
            (all_vf_closeness / float(all_vf_closeness + all_nonvf_closeness)))
        f.write('Mean VF CLOSENESS prob: %f\n' % np.mean(results_closeness))

        f.write('\n')
        f.write('==========\n')
        f.write('VF count: %d\n' % all_short_vf)
        f.write('VF  CLOSENESS count: %d\n' % all_short_vf_closeness)
        f.write('Non vf count: %d\n' % all_short_nonvf)
        f.write('Non vf CLOSENESS count: %d\n' % all_short_nonvf_closeness)
        if all_short_vf + all_short_nonvf > 0:
            f.write('VF perc: %f\n' %
                    (all_short_vf / float(all_short_vf + all_short_nonvf)))
        if all_short_vf_closeness + all_short_nonvf_closeness > 0:
            f.write(
                'VF CLOSENESS perc: %f\n' %
                (all_short_vf_closeness /
                 float(all_short_vf_closeness + all_short_nonvf_closeness)))
        f.write('Mean VF prob: %f\n' % np.mean(short_results))
        f.write('Mean VF CLOSENESS prob: %f\n' % np.mean(short_results3))
        f.write('Mean VF2 prob: %f\n' % np.mean(short_results2))
        f.write('=-----------------\n')
        f.write('VF count: %d\n' % all_long_vf)
        f.write('VF CLOSENESS count: %d\n' % all_long_vf_closeness)
        f.write('Non vf count: %d\n' % all_long_nonvf)
        f.write('Non vf CLOSENESS count: %d\n' % all_long_nonvf_closeness)
        f.write('VF perc: %f\n' %
                (all_long_vf / float(all_long_vf + all_long_nonvf)))
        f.write('VF CLOSENESS perc: %f\n' %
                (all_long_vf_closeness /
                 float(all_long_vf_closeness + all_long_nonvf_closeness)))
        f.write('Mean VF prob: %f\n' % np.mean(long_results))
        f.write('Mean VF CLOSENESS prob: %f\n' % np.mean(long_results3))
        f.write('Mean VF2 prob: %f\n' % np.mean(long_results2))
コード例 #8
0
def filter(g, traceroutes):
    results = list()

    # remove traces with unknown nodes
    traceroutes = vft.trace_in_vertex_id(g, traceroutes)

    progress = progressbar1.AnimatedProgressBar(end=len(traceroutes), width=15)
    for trace in traceroutes:
        progress += 1
        progress.show_progress()

        if not vft.trace_exists(g, trace):
            print 'BUG?'
            continue

        for x in range(0, g.vcount()):
            g.vs[x]['traces'] = dict()

        trace = tuple(trace)
        s, t = trace[0], trace[-1]

        sh_len = g.shortest_paths(s, t, mode=i.ALL)[0][0]
        sh_len += 1  # igraph's hop count to node count

        all_routes = helpers.dfs_mark(g, s, t, sh_len + 1)
        # all_routes2 = helpers.dfs_simple(g, s, t, sh_len + 1, ())

        # if set(all_routes) - set(all_routes2) != set(all_routes2) - set(all_routes):
        #     print 'AJAJAJ'
        #     print all_routes
        #     print '----------'
        #     print all_routes2

        sh_routes = [x for x in all_routes if len(x) == sh_len]

        all_vf_routes = [x for x in all_routes if vft.is_valley_free(g, x)]
        prediction_set = set(sh_routes) | set(all_vf_routes)

        result = [
            trace,
            len(trace),
            sh_len,
            len(sh_routes),
            trace in sh_routes,
            len(all_vf_routes),
            trace in all_vf_routes,
            len(all_routes),
            trace in all_routes,
            len(prediction_set),
            trace in prediction_set,
            vft.is_valley_free(g, trace),
            # sh_routes, all_vf_routes, all_routes,
            vft.trace_to_string(g, trace)
        ]

        results.append(result)

    print >> sys.stderr, (
        'TRACE\tTRACE_LEN\tSH_LEN',
        '\t#SH_ROUTE\tOK',
        '\t#ALL_VF\tOK',
        '\t#ALL_ROUTE\tOK',
        '\t#PREDICTION_SET\tOK',
        '\tIS_VF',
        # '\tSH_ROUTES\tALL_VF_ROUTES\tALL_ROUTE',
        '\tTRACE_STR')
    for result in results:
        result = [str(r) for r in result]
        print >> sys.stderr, '\t'.join(result)

    return results
コード例 #9
0
ファイル: random_sh_routing.py プロジェクト: csomaati/netform
def main():
    parser = argparse.ArgumentParser(
        description=('SANDBOX mode. ', 'Write something ', 'useful here'),
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--progressbar', action='store_true')
    parser.add_argument('--verbose', '-v', action='count', default=0)
    parser.add_argument('--edge-drop',
                        dest='edge_drop',
                        type=float,
                        default=0.0)
    parser.add_argument('--closeness-limit',
                        dest='closeness_limit',
                        type=float,
                        default=0.0)
    parser.add_argument('network')
    parser.add_argument('traceroutes')

    arguments = parser.parse_args()

    show_progress = arguments.progressbar

    arguments.verbose = min(len(helpers.LEVELS), arguments.verbose)
    logging.getLogger('compnet').setLevel(helpers.LEVELS[arguments.verbose])

    g = helpers.load_network(arguments.network)
    traceroutes = helpers.load_from_json(arguments.traceroutes)

    logger.info('ecount: %d' % g.ecount())
    logger.info('vcount: %d' % g.vcount())
    logger.info('trace count: %d' % len(traceroutes))

    g_dummy = g.copy()
    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(end=len(traceroutes),
                                                    width=15)

    closeness_list = []
    for x in g_dummy.vs:
        progress += 1
        progress.show_progress()
        closeness_list.append((x.index, g_dummy.closeness(x)))

    end = int(arguments.closeness_limit * g_dummy.vcount())
    logger.debug('Top node count: %d' % end)
    top_nodes = sorted(closeness_list, key=lambda x: x[1], reverse=True)[:end]
    top_nodes_index = [x[0] for x in top_nodes]
    top_nodes_name = [g_dummy.vs[x[0]]['name'] for x in top_nodes]
    top_edges = [
        e for e in g_dummy.es
        if e.source in top_nodes_index and e.target in top_nodes_index
    ]
    logger.debug('Top edge count: %d' % len(top_edges))
    random.shuffle(top_edges)
    edge_drop = top_edges[:int(len(top_edges) * arguments.edge_drop)]
    logger.debug('Dropped edge count: %d' % len(edge_drop))
    # edges = [x.index for x in g_dummy.es]
    # random.shuffle(edges)
    # edge_drop = edges[:int(g.ecount() * arguments.edge_drop)]
    g_dummy.delete_edges(edge_drop)

    traceroutes = traceroutes[:10000]

    all_edges = []
    for trace in traceroutes:
        edges = zip(trace, trace[1:])
        edges = [tuple(sorted(e)) for e in edges]
        all_edges.extend(edges)

    all_edges = list(set(all_edges))
    top_edges = [
        e for e in all_edges
        if e[0] in top_nodes_name and e[1] in top_nodes_name
    ]
    logger.info('TOP edge count in real traceroutes: %d' % len(top_edges))

    found_top_edges = []
    increments = []
    for trace in traceroutes:
        edges = zip(trace, trace[1:])
        edges = [tuple(sorted(e)) for e in edges]
        top_edges = [
            x for x in edges
            if x[0] in top_nodes_name and x[1] in top_nodes_name
        ]
        found_top_edges.extend(top_edges)
        found_top_edges = list(set(found_top_edges))
        increments.append(len(found_top_edges))

    logger.info('Found top edge count: %d' % len(found_top_edges))

    dummy_sh_traceroutes_meta = []
    original_sh_traceroutes_meta = []
    stretches = []
    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(end=len(traceroutes),
                                                    width=15)
    for trace in traceroutes:
        progress += 1
        progress.show_progress()
        s, t = trace[0], trace[-1]
        # logger.debug('Get shortest paths from {s} to {t}'.format(s=s, t=t))
        sh_dummy = random.choice(g_dummy.get_shortest_paths(s, t))
        sh_original = random.choice(g.get_shortest_paths(s, t))
        stretch = len(sh_dummy) - len(sh_original)
        dummy_sh_traceroutes_meta.append((sh_dummy, stretch))
        original_sh_traceroutes_meta.append((sh_original, 0))
        stretches.append(stretch)
        # logger.debug('Stretch: %d' % stretch)
        # logger.debug('SH DUMMY: %s' % [g_dummy.vs[x]['name'] for x in sh_dummy])
        # logger.debug('SH ORIG: %s' % [g.vs[x]['name'] for x in sh_original])

    dummy_sh_meta = [(x[0], x[1],
                      vft.is_valley_free(g_dummy, x[0], vft.CLOSENESS))
                     for x in dummy_sh_traceroutes_meta]
    dummy_sh_len_hist = collections.Counter(
        [len(x[0]) for x in dummy_sh_traceroutes_meta])
    original_sh_len_hist = collections.Counter(
        [len(x[0]) for x in original_sh_traceroutes_meta])
    original_len_hist = collections.Counter([len(x) for x in traceroutes])
    stretches = [x for x in stretches if x >= 0]
    stretch_hist = collections.Counter(stretches)

    import matplotlib.pyplot as plt
    print
    print[(x, 100 * y / float(len(traceroutes)), y)
          for x, y in stretch_hist.iteritems()]
    plt.plot([x for x in stretch_hist.iterkeys()],
             [x for x in stretch_hist.itervalues()], 'g^')
    plt.ylabel('some numbers')
    # plt.show()

    logger.info('Dummy VF stat')
    max_stretch = max(dummy_sh_meta, key=lambda x: x[1])[1]
    for stretch in range(0, max_stretch + 1):
        stretched_traces = [x for x in dummy_sh_meta if x[1] == stretch]
        count = len(stretched_traces)
        vf_count = len([x for x in stretched_traces if x[2]])
        vf_perc = vf_count / float(count)
        nonvf_count = count - vf_count
        nonvf_perc = nonvf_count / float(count)
        logger.info(
            '{stretch} -- {vf_perc}[{vf_count}]\t{nonvf_perc}[{nonvf_count}]'.
            format(stretch=stretch,
                   vf_perc=vf_perc,
                   vf_count=vf_count,
                   nonvf_perc=nonvf_perc,
                   nonvf_count=nonvf_count))
    import matplotlib.pyplot as plt
    plt.plot(increments, 'g^')
    plt.ylabel('some numbers')
    plt.show()
コード例 #10
0
def random_nonvf_route(g, s, t, hop_count,
                       path=None, vfmode=None):
    if path is None:
        try:
            if isinstance(s, str):
                s = g.vs.find(s).index
            if isinstance(t, str):
                t = g.vs.find(t).index

            # check if s and t are valid inidecies
            _, _ = g.vs[s], g.vs[t]
        except (ValueError, IndexError):
            raise IndexError('Vertex index out of range or not exists')

        # some special case
        if hop_count < 1:
            # print 'HOP COUNT: %d' % hop_count
            return (False, [])

        if s == t: return (True, [s, ])
        # if s != t then length must be larger than 1
        if hop_count == 1:
            # print 'S: %s, T: %s, HC: %d' % (s, t, hop_count)
            return (False, [])

        shortest_route = g.shortest_paths(s, t, mode=i.OUT)[0][0] + 1
        if hop_count < shortest_route:
            # print 'TOO SHORT %d' % (hop_count)
            return (False, [])

        path = [s, ]
        hop_count -= 1
        if vfmode is None: vfmode = vft.CLOSENESS

    if s == t:
        return (vft.is_valley_free(g, path, vfmode=vfmode), path)

    logger.debug('Hop count remained: %d' % hop_count)
    logger.debug('Current node: %s' % s)
    neighbors = [x for x in g.neighbors(s, mode=i.OUT) if x not in path]
    distances = [x[0] for x in g.shortest_paths(neighbors, t, mode=i.OUT)]
    candidates = filter(lambda x: x[1] + 1 <= hop_count,  # +, mert az igraph
                                                          # azt mondja meg,
                                                          # s-bol hany hopp t
                        zip(neighbors, distances))

    weights = [-1 if not vft.is_valley_free(g, path + [x[0], ], vfmode=vfmode)
               else vft.edge_dir(g, [s, x[0]], vfmode=vfmode).value
               for x in candidates]
    # create a list where every columnt is neighbors, distances, weights
    # respectevly
    candidates = zip(*(zip(*candidates) + [weights, ]))
    # sort by weights
    candidates = sorted(candidates, key=itemgetter(2))

    if len(candidates) == 0:
        return (False, [])

    logger.debug('Valid candidates: %s' % candidates)
    first_route = (False, [])  # by default there was no route to T
    for next_hop in candidates:
        logger.debug('Chosen one: %s' % next_hop[0])
        isvf, r = random_nonvf_route(g, next_hop[0], t,
                                     hop_count - 1,
                                     path + [next_hop[0], ], vfmode)
        if len(r) == 0: continue
        if not isvf:
            # we are done, we found a nonVF route
            return (isvf, r)
        # our first guess a vf route. save it for later use (e.g. there is no
        # nonVF rotue) but lets try again with another candidate
        if len(first_route[1]) == 0:  # first save
            first_route = (isvf, r)

    return first_route
コード例 #11
0
def purify(g,
           meta_original,
           out,
           count=1000,
           try_per_race=1,
           show_progress=False,
           with_lp=True):

    empty = 0
    # remove traces with already calculated random paths
    logger.warn('[r]ONLY NOT FILLED PATHS[/]')
    meta_filled = [
        x for x in meta_original if helpers.RANDOM_WALK_RUN_COUNT not in x
    ]

    # Filter if interested only in routes of stretch 1
    # meta_filled = [x for x in meta_original
    #                if x[helpers.TRACE_LEN]-x[helpers.SH_LEN] == 1]

    ## traces with a maximum stretch
    # logger.warn('[r]!!!ONLY WITH STRETCH[/]')
    # meta = [x for x in meta if x[helpers.STRETCH] > -1]

    # # shorter meta records
    # logger.warn('[r]!!!ONLY SHORT TRACES[/]')
    # meta = [x for x in meta if len(x[helpers.TRACE]) < 5]

    # meta_map = {tuple(x[helpers.TRACE]): x for x in meta_filled}

    logger.info('All trace count: %d' % len(meta_filled))
    tr_count = min(len(meta_filled), count)
    meta_random = random.sample(meta_filled, tr_count)
    logger.info('Chosen subset count: %d' % len(meta_random))

    # real_vf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 1]
    # real_nonvf_degree = [x for x in meta_random if x[helpers.IS_VF_DEGREE] == 0]
    # assert len(real_nonvf_degree) == tr_count - len(real_vf_degree)

    # real_vf_prelabeled = [x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 1]
    # real_nonvf_prelabeled = [x for x in meta_random if x[helpers.IS_VF_PRELABELED] == 0]
    # assert len(real_nonvf_prelabeled) == tr_count - len(real_vf_prelabeled)

    # real_vf_closeness = [x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 1]
    # real_nonvf_closeness = [x for x in meta_random if x[helpers.IS_VF_CLOSENESS] == 0]
    # assert len(real_nonvf_closeness) == tr_count - len(real_vf_closeness)

    # logger.info('Real vf degree: %f[%d]' % ((len(real_vf_degree) / float(tr_count),
    #                                  len(real_vf_degree))))
    # logger.info('Real nonvf degree: %f[%d]' % ((len(real_nonvf_degree) / float(tr_count),
    #                                     len(real_nonvf_degree))))

    # logger.info('Real vf prelabeled: %f[%d]' % ((len(real_vf_prelabeled) / float(tr_count),
    #                                  len(real_vf_prelabeled))))
    # logger.info('Real nonvf prelabeled: %f[%d]' % ((len(real_nonvf_prelabeled) / float(tr_count),
    #                                     len(real_nonvf_prelabeled))))
    # logger.info('Real vf closeness: %f[%d]' % ((len(real_vf_closeness)/float(tr_count), len(real_vf_closeness))))
    # logger.info('Real nonvf closeness: %f[%d]' % ((len(real_nonvf_closeness)/float(tr_count), len(real_nonvf_closeness))))

    # traceroutes = [x[helpers.TRACE] for x in meta_random]
    # traceroutes = vft.trace_in_vertex_id(g, traceroutes)

    try:
        meta_random[0][helpers.TRACE]
    except Exception:
        meta_random = [{helpers.TRACE: x} for x in meta_random]

    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(end=len(meta_random),
                                                    width=15)

    stretch_list = []
    max_stretch = max(
        [x[helpers.TRACE_LEN] - x[helpers.SH_LEN] for x in meta_random])
    for stretch in range(0, max_stretch + 1):
        metas = [
            x for x in meta_random
            if x[helpers.TRACE_LEN] - x[helpers.SH_LEN] == stretch
        ]
        stretch_list.extend(list(repeat(stretch, len(metas))))

    # print(stretch_list)
    lenghts = random.shuffle(stretch_list)

    strx_array = []

    for idx, trace_meta in enumerate(meta_random):
        progress += 1
        progress.show_progress()
        # print(trace_meta[helpers.TRACE])
        shl = trace_meta[helpers.SH_LEN]
        trace = vft.trace_in_vertex_id(g, [
            trace_meta[helpers.TRACE],
        ])
        if len(trace) != 1:
            print 'PROBLEM'
            print trace_meta
            continue
        trace = trace[0]
        # print(trace)
        random_walk_closeness_route_vf = 0
        random_walk_closeness_route_lp_soft = 0
        random_walk_closeness_route_lp_hard = 0
        random_walk_degree_route_vf = 0
        random_walk_degree_route_lp_soft = 0
        random_walk_degree_route_lp_hard = 0
        random_walk_prelabeled_route_vf = 0
        random_walk_prelabeled_route_lp_soft = 0
        random_walk_prelabeled_route_lp_hard = 0

        s, t = trace[0], trace[-1]
        for counter in xrange(0, try_per_race):
            # random_path = helpers.random_route_walk(g, s, t, len(trace)) # Modified
            random_path = helpers.random_route_walk(
                g, s, t, shl + stretch_list[idx])  # Modified
            if len(random_path) == 0:
                empty += 1
            if vft.is_valley_free(g, random_path, vfmode=vft.CLOSENESS):
                random_walk_closeness_route_vf += 1
                if (len(random_path) == shl + 1):
                    strx_array.append(1)
                if with_lp:
                    lp_soft = vft.is_local_preferenced(g,
                                                       random_path,
                                                       first_edge=True,
                                                       vfmode=vft.CLOSENESS)
                    lp_hard = vft.is_local_preferenced(g,
                                                       random_path,
                                                       first_edge=False,
                                                       vfmode=vft.CLOSENESS)
                    if lp_soft:
                        random_walk_closeness_route_lp_soft += 1
                    if lp_hard:
                        random_walk_closeness_route_lp_hard += 1
            else:
                if (len(random_path) == shl + 1):
                    strx_array.append(0)

            # if vft.is_valley_free(g, random_path, vfmode=vft.DEGREE):
            #     random_walk_degree_route_vf += 1
            #     if with_lp:
            #         lp_soft = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=True,
            #                                            vfmode=vft.DEGREE)
            #         lp_hard = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=False,
            #                                            vfmode=vft.DEGREE)
            #         if lp_soft:
            #             random_walk_degree_route_lp_soft += 1
            #         if lp_hard:
            #             random_walk_degree_route_lp_hard += 1

            # if vft.is_valley_free(g, random_path, vfmode=vft.PRELABELED):
            #     random_walk_prelabeled_route_vf += 1
            #     if with_lp:
            #         lp_soft = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=True,
            #                                            vfmode=vft.PRELABELED)
            #         lp_hard = vft.is_local_preferenced(g, random_path,
            #                                            first_edge=False,
            #                                            vfmode=vft.PRELABELED)
            #         if lp_soft:
            #             random_walk_prelabeled_route_lp_soft += 1
            #         if lp_hard:
            #             random_walk_prelabeled_route_lp_hard += 1

            # sanity check


#             if random_path[0] != s or random_path[-1] != t:
#                 logger.error('ALERT')

            if len(random_path) != len(set(random_path)):
                logger.error('LENGTH ERROR')

        extra_meta = {
            helpers.RANDOM_WALK_RUN_COUNT:
            try_per_race,
            helpers.RANDOM_WALK_VF_CLOSENESS_ROUTE:
            random_walk_closeness_route_vf,
            helpers.RANDOM_WALK_VF_DEGREE_ROUTE:
            random_walk_degree_route_vf,
            helpers.RANDOM_WALK_VF_PRELABELED_ROUTE:
            random_walk_prelabeled_route_vf,
        }
        if with_lp:
            extra_meta.update({
                helpers.RANDOM_WALK_LP_SOFT_CLOSENESS_ROUTE:
                random_walk_closeness_route_lp_soft,
                helpers.RANDOM_WALK_LP_HARD_CLOSENESS_ROUTE:
                random_walk_closeness_route_lp_hard,
                helpers.RANDOM_WALK_LP_SOFT_DEGREE_ROUTE:
                random_walk_degree_route_lp_soft,
                helpers.RANDOM_WALK_LP_HARD_DEGREE_ROUTE:
                random_walk_degree_route_lp_hard,
                helpers.RANDOM_WALK_LP_SOFT_PRELABELED_ROUTE:
                random_walk_prelabeled_route_lp_soft,
                helpers.RANDOM_WALK_LP_HARD_PRELABELED_ROUTE:
                random_walk_prelabeled_route_lp_hard
            })

        trace_meta.update(extra_meta)

    ## save modified meta
    # all meta_* get only references from meta_original
    helpers.save_to_json(out, meta_random)
    # meta_mod = [x for x in meta_map.itervalues()]
    # helpers.save_to_json(out, meta_mod)

    # calculate results
    # real_vf = [x[helpers.IS_VF_CLOSENESS] for x in meta_random]
    # real_vf_ratio = np.mean(real_vf)

    random_walk_vf_ratio_per_element = [
        x[helpers.RANDOM_WALK_VF_CLOSENESS_ROUTE] /
        x[helpers.RANDOM_WALK_RUN_COUNT] for x in meta_random
    ]
    random_walk_vf_ratio = np.mean(random_walk_vf_ratio_per_element)
    # print results
    logger.info('')
    logger.info('Empty: %d' % empty)
    logger.info('Tested trace count: %d' % len(meta_random))
    # logger.info('VF ratio in tested traces: %f' % real_vf_ratio)
    logger.info('VF ratio in random walks: %f' % random_walk_vf_ratio)
    logger.info('VF ratio in random walks for path stretch 1: %f' %
                np.mean(strx_array))
コード例 #12
0
def purify(g, traceroutes, flags, show_progress=False):
    results = list()

    # remove traces with unknown nodes
    traceroutes = vft.trace_in_vertex_id(g, traceroutes)

    # generate valley-free graph
    if flags[FLAG_PRELABELED]:
        logger.info('Generate VF_G_PRE')
        vf_g_pre = vft.convert_to_vf(g, vfmode=vft.PRELABELED)
    else:
        logger.info('Skip prelabeled graph')
    if flags[FLAG_DEGREE]:
        logger.info('Generate VF_G_DEGREE')
        vf_g_degree = vft.convert_to_vf(g, vfmode=vft.DEGREE)
    else:
        logger.info('Skip degree graph')
    if flags[FLAG_CLOSENESS]:
        logger.info('Generate VF_G_CLOSENESS')
        vf_g_closeness = vft.convert_to_vf(g, vfmode=vft.CLOSENESS)
    else:
        logger.info('Skip closeness graph')

    progress = progressbar1.DummyProgressBar(end=10, width=15)
    if show_progress:
        progress = progressbar1.AnimatedProgressBar(end=len(traceroutes),
                                                    width=15)
    for trace in traceroutes:
        progress += 1
        progress.show_progress()

        logger.debug('Current trace: %s' % ([g.vs[x]['name'] for x in trace]))

        if len(trace) == 1: continue

        s, t = trace[0], trace[-1]

        is_vf_prelabeled = -1
        is_lp_prelabeled_hard = -1
        is_lp_prelabeled_soft = -1

        is_vf_degree = -1
        is_lp_degree_hard = -1
        is_lp_degree_soft = -1

        is_vf_closeness = -1
        is_lp_closeness_hard = -1
        is_lp_closeness_soft = -1

        trace_len = len(trace)
        sh_len = g.shortest_paths(s, t, mode=i.OUT)[0][0]
        sh_len += 1  # convert hop count to node Counter

        if flags[FLAG_PRELABELED]:
            is_vf_prelabeled = vft.is_valley_free(g, trace, vft.PRELABELED)
            is_vf_prelabeled = int(is_vf_prelabeled)
            if is_vf_prelabeled:
                if flags[FLAG_LP_SOFT]:
                    lp_soft = vft.is_local_preferenced(g,
                                                       trace,
                                                       vf_g=vf_g_pre,
                                                       first_edge=True,
                                                       vfmode=vft.PRELABELED)
                    is_lp_prelabeled_soft = 1 if lp_soft else 0
                else:
                    is_lp_prelabeled_soft = -1

                if flags[FLAG_LP_HARD]:
                    lp_hard = vft.is_local_preferenced(g,
                                                       trace,
                                                       vf_g=vf_g_pre,
                                                       first_edge=False,
                                                       vfmode=vft.PRELABELED)
                    is_lp_prelabeled_hard = 1 if lp_hard else 0
                else:
                    is_lp_prelabeled_hard = -1

        if flags[FLAG_DEGREE]:
            is_vf_degree = vft.is_valley_free(g, trace, vft.DEGREE)
            is_vf_degree = int(is_vf_degree)
            if is_vf_degree:
                if flags[FLAG_LP_SOFT]:
                    lp_soft = vft.is_local_preferenced(g,
                                                       trace,
                                                       vf_g=vf_g_degree,
                                                       first_edge=True,
                                                       vfmode=vft.DEGREE)
                    is_lp_degree_soft = 1 if lp_soft else 0
                else:
                    is_lp_degree_soft = -1

                if flags[FLAG_LP_HARD]:
                    lp_hard = vft.is_local_preferenced(g,
                                                       trace,
                                                       vf_g=vf_g_degree,
                                                       first_edge=False,
                                                       vfmode=vft.DEGREE)
                    is_lp_degree_hard = 1 if lp_hard else 0
                else:
                    is_lp_degree_hard = -1

        if flags[FLAG_CLOSENESS]:
            is_vf_closeness = vft.is_valley_free(g, trace, vft.CLOSENESS)
            is_vf_closeness = int(is_vf_closeness)
            if is_vf_closeness:
                if flags[FLAG_LP_SOFT]:
                    lp_soft = vft.is_local_preferenced(g,
                                                       trace,
                                                       vf_g=vf_g_closeness,
                                                       first_edge=True,
                                                       vfmode=vft.CLOSENESS)
                    is_lp_closeness_soft = 1 if lp_soft else 0
                else:
                    is_lp_closeness_soft = -1
                if flags[FLAG_LP_HARD]:
                    lp_hard = vft.is_local_preferenced(g,
                                                       trace,
                                                       vf_g=vf_g_closeness,
                                                       first_edge=False,
                                                       vfmode=vft.CLOSENESS)
                    is_lp_closeness_hard = 1 if lp_hard else 0
                else:
                    is_lp_closeness_hard = -1

        if False:
            sh_vf_len = vft.get_shortest_vf_route(g,
                                                  s,
                                                  t,
                                                  mode='vf',
                                                  vf_g=vf_g_pre,
                                                  _all=True,
                                                  vfmode=vft.PRELABELED)
            # ugy tunik, mintha nem mindig lenne pontos? fentartassal kezelendo
            # ez az ertek azert is kerult bele, hogy ellenorizzuk
            in_vf_prediction = 1 if sh_vf_len and trace in sh_vf_len else 0
        else:
            sh_vf_len = -1
            in_vf_prediction = -1

        sh_vf_len = len(sh_vf_len[0]) if isinstance(sh_vf_len, list) else -1
        percentage_stretch = trace_len / float(sh_len)

        named_trace = [g.vs[_id]["name"] for _id in trace]

        result = {
            helpers.TRACE: named_trace,
            helpers.TRACE_LEN: trace_len,
            helpers.SH_LEN: sh_len,
            helpers.SH_VF_LEN: sh_vf_len,
            helpers.IS_VF_PRELABELED: is_vf_prelabeled,
            helpers.IS_VF_DEGREE: is_vf_degree,
            helpers.IS_VF_CLOSENESS: is_vf_closeness,
            helpers.HOP_STRETCH: trace_len - sh_len,
            helpers.PERC_STRETCH: percentage_stretch,
            helpers.IN_VF_PRED: in_vf_prediction,
            helpers.IS_LP_SOFT_PRELABELED: is_lp_prelabeled_soft,
            helpers.IS_LP_HARD_PRELABELED: is_lp_prelabeled_hard,
            helpers.IS_LP_SOFT_DEGREE: is_lp_degree_soft,
            helpers.IS_LP_HARD_DEGREE: is_lp_degree_hard,
            helpers.IS_LP_SOFT_CLOSENESS: is_lp_closeness_soft,
            helpers.IS_LP_HARD_CLOSENESS: is_lp_closeness_hard,
        }

        results.append(result)

    # print >> sys.stderr, ('TRACE\tTRACE_LEN\tSH_LEN\tSH_VF_LEN\tIS_VF',
    #                       '\tSTRETCH\tIN_VF_PREDICTION\tIS_LP_F\tIS_LP_ALL')
    # for result in results:
    #     result = [str(r) for r in result]
    #     print >> sys.stderr, '\t'.join(result)

    # statistic = statistics.purify(g, results,
    #                               'nc+ec+tc+rt+vf+vf_closeness+pred+lp_soft_prelabeled+lp_hard_prelabeled+lp_soft_degree+lp_hard_degree+lp_soft_closeness+lp_hard_closeness'.split('+'))
    # statistics.stat_printer(statistic)

    return results