コード例 #1
0
def parse_keyval(list_keyval, defaults={}):
  """ Parse list of "<key>:<value>" into a dictionary.
  Args:
    list_keyval List of "<key>:<value>"
    defaults    Default key -> value to use (also ensure type, 'str' assumed for other keys)
  Returns:
    Associated dictionary
  """
  parsed = {}
  # Parsing
  sep = ":"
  for entry in list_keyval:
    pos = entry.find(sep)
    if pos < 0:
      raise tools.UserException("Expected list of " + repr("<key>:<value>") + ", got " + repr(entry) + " as one entry")
    key = entry[:pos]
    if key in parsed:
      raise tools.UserException("Key " + repr(key) + " had already been specified with value " + repr(parsed[key]))
    val = entry[pos + len(sep):]
    if key in defaults: # Assert type constructibility
      try:
        val = type(defaults[key])(val)
      except Exception:
        raise tools.UserException("Required key " + repr(key) + " expected a value of type " + repr(getattr(type(defaults[key]), "__name__", "<unknown>")))
    parsed[key] = val
  # Add default values (done first to be able to force a given type with 'required')
  for key in defaults:
    if key not in parsed:
      parsed[key] = defaults[key]
  # Return final dictionary
  return parsed
コード例 #2
0
def build(struct, name, select, args, **kwargs):
    """ Call the constructor associated with the given selection and the given keyword + parsed arguments.
  Args:
    struct Structure defining constructors and their respective arguments
    name   Name of what is built by the constructor
    select Constructor to select
    args   List of "key:value" command line arguments
    ...    Key-value arguments forwarded to the constructor
  """
    # Recover constructor and argument structure
    if select not in struct:
        raise tools.UserException(
            "Unknown " + name + " " + repr(select) + ", " +
            ("no " + name +
             " available" if len(struct) == 0 else "expected one of: '" +
             ("', '").join(struct.keys()) + "'"))
    construct, args_struct = struct[select]
    # Translate parameters
    defaults = {}
    for key, val in args_struct.items():
        defaults[key] = val[0]
    args_parsed = tools.parse_keyval(args, defaults=defaults)
    # Instantiate and return
    args_kw = {}
    for key, val in args_struct.items(
    ):  # Ignore supplementary parameters by using '_struct' instead of '_parsed'
        args_kw[args_struct[key][1]] = args_parsed[key]
    return construct(**args_kw, **kwargs)
コード例 #3
0
 def __init__(self, dataset, model, args):
     # Parse key:val arguments
     nbcores = len(os.sched_getaffinity(0))
     if nbcores == 0:
         nbcores = 4  # Arbitrary fallback
     args = tools.parse_keyval(args,
                               defaults={
                                   "batch-size": 32,
                                   "eval-batch-size": 1024,
                                   "weight-decay": 0.00004,
                                   "label-smoothing": 0.,
                                   "labels-offset": 0,
                                   "nb-fetcher-threads": nbcores,
                                   "nb-batcher-threads": nbcores
                               })
     if args["batch-size"] <= 0:
         raise tools.UserException(
             "Cannot make batches of non-positive size")
     # Report experiments
     with tools.Context("slim", None):
         print("Dataset name in use:   " + repr(dataset[0]) + " (in " +
               repr(dataset[1]) + ")")
         print("Dataset preprocessing: " +
               (repr(args["preprocessing"]) if "preprocessing" in
                args else "<model default>"))
         print("Model name in use:     " + repr(model))
     # Finalization
     self.__args = args
     self.__dataset = dataset
     self.__preproc = args[
         "preprocessing"] if "preprocessing" in args else model
     self.__model = model
     self.__cntr_wk = 0  # Worker instantiation counter
     self.__cntr_ev = 0  # Evaluator instantiation counter
コード例 #4
0
 def checked(**kwargs):
   # Check parameter validity
   message = check(**kwargs)
   if message is not None:
     raise tools.UserException("Aggregation rule %r cannot be used with the given parameters: %s" % (name, message))
   # Aggregation (hard to assert return value, duck-typing is allowed...)
   return unchecked(**kwargs)
コード例 #5
0
 def snapshot(self,
              instance,
              overwrite=False,
              deepcopy=False,
              nowarnref=False):
     """ Take/overwrite the snapshot for a given instance.
 Args:
   instance  Instance to snapshot
   overwrite Overwrite any existing snapshot for the same class
   deepcopy  Deep copy instance's state dictionary instead of referencing
   nowarnref To always avoid a warning in debug mode if restoring a state dictionary reference is the wanted behavior
 Returns:
   self
 """
     instance, key = type(self)._prepare(instance)
     # Snapshot the state dictionary
     if not overwrite and key in self._store:
         raise tools.UserException(
             "An snapshot for %r is already stored in the checkpoint" % key)
     if deepcopy:
         self._store[key] = copy.deepcopy(instance.state_dict())
     else:
         self._store[key] = instance.state_dict().copy()
     # Track whether a deepcopy was made (or whether restoring a reference is the expected behavior)
     if __debug__:
         self._copied[key] = deepcopy or nowarnref
     # Enable chaining
     return self
コード例 #6
0
        def __getattr__(self, name):
            """ Get a method from its name.
      Args:
        name Method name
      Returns:
        Bound method value
      """
            # Assertions
            if not hasattr(self, nname):
                raise tools.UserException(
                    "Unable to access instance as its creation failed")
            # Get method from name
            method = methods[name]
            native = getattr(self, nname)

            # Bind wrapping
            def call(*args):
                """ Call the method with the first parameter as the current instance.
        Args:
          ... Forwarded next parameters
        Returns:
          Forwarded return value
        """
                return method(native, *args)

            return call
コード例 #7
0
def get_module(lib, src):
    """ (Build then) load the native shared object.
  Args:
    lib Path to the shared object
    src Path to the unique source file
  Returns:
    Module instance
  """
    # Conversion if necessary
    if not isinstance(lib, pathlib.Path):
        lib = pathlib.Path(lib)
    if not isinstance(src, pathlib.Path):
        src = pathlib.Path(src)
    assert src.exists(), "Source file '" + str(src) + "' does not exist"
    # Build if necessary
    if not lib.exists() or src.stat().st_mtime > lib.stat().st_mtime:
        command = shlex.split(
            "c++ -Wall -Wextra -Wfatal-errors -O2 -std=c++14 -fPIC -shared -o "
            + shlex.quote(str(lib)) + " " + shlex.quote(str(src)))
        command = subprocess.run(command)
        if command.returncode != 0:
            raise tools.UserException("Compilation of '" + str(src.resolve()) +
                                      "' failed with error code " +
                                      str(command.returncode))
    # Load module
    return ctypes.CDLL(str(lib.resolve()))
コード例 #8
0
def parse_keyval(list_keyval, defaults={}):
    """ Parse list of "<key>:<value>" into a dictionary.
  Args:
    list_keyval List of "<key>:<value>"
    defaults    Default key -> value to use (also ensure type, type is guessed for other keys)
  Returns:
    Associated dictionary
  """
    parsed = {}
    # Parsing
    sep = ":"
    for entry in list_keyval:
        pos = entry.find(sep)
        if pos < 0:
            raise tools.UserException("Expected list of " +
                                      repr("<key>:<value>") + ", got " +
                                      repr(entry) + " as one entry")
        key = entry[:pos]
        if key in parsed:
            raise tools.UserException(
                "Key " + repr(key) +
                " had already been specified with value " + repr(parsed[key]))
        val = entry[pos + len(sep):]
        # Guess/assert type constructibility
        if key in defaults:
            try:
                cls = type(defaults[key])
                if cls is bool:  # Special case
                    val = val.lower() not in ("", "0", "n", "false")
                else:
                    val = cls(val)
            except Exception:
                raise tools.UserException(
                    "Required key " + repr(key) +
                    " expected a value of type " +
                    repr(getattr(type(defaults[key]), "__name__", "<unknown>"))
                )
        else:
            val = parse_keyval_auto_convert(val)
        # Bind (converted) value to associated key
        parsed[key] = val
    # Add default values (done first to be able to force a given type with 'required')
    for key in defaults:
        if key not in parsed:
            parsed[key] = defaults[key]
    # Return final dictionary
    return parsed
コード例 #9
0
 def __init__(self, nbworkers, nbbyzwrks, args):
     # Parse key:val arguments
     ps = tools.parse_keyval([] if args is None else args,
                             defaults={"ps": 0.9})["ps"]
     if ps <= 0 or ps > 1:
         raise tools.UserException("Invalid selection probability, got %s" %
                                   (ps, ))
     # Finalization
     self._p = ps
     self._f = nbbyzwrks
コード例 #10
0
 def __call__(self):
   """ Get a pointer to the native instance.
   Returns:
     Pointer t
   """
   # Assertions
   if not hasattr(self, nname):
     raise tools.UserException("Unable to access instance as its creation failed")
   # Return pointer
   return getattr(self, nname)
コード例 #11
0
ファイル: study.py プロジェクト: LPD-EPFL/ByzantineMomentum
 def __init__(self, path_results):
   """ Load the data from a training/evaluation result directory.
   Args:
     path_results Path-like to the result directory to load
   """
   # Conversion to path
   if not isinstance(path_results, pathlib.Path):
     path_results = pathlib.Path(path_results)
   # Ensure directory exist
   if not path_results.exists():
     raise tools.UserException(f"Result directory {str(path_results)} cannot be accessed or does not exist")
   # Load configuration string
   path_config = path_results / "config"
   try:
     data_config = path_config.read_text().strip()
   except Exception as err:
     tools.warning(f"Result directory {str(path_results)}: unable to read configuration ({err})")
     data_config = None
   # Load configuration json
   path_json = path_results / "config.json"
   try:
     with path_json.open("r") as fd:
       data_json = json.load(fd)
   except Exception as err:
     tools.warning(f"Result directory {str(path_results)}: unable to read JSON configuration ({err})")
     data_json = None
   # Load training data
   path_study = path_results / "study"
   try:
     data_study = pandas.read_csv(path_study, sep="\t", index_col=0, na_values="     nan")
     data_study.index.name="Step number"
   except Exception as err:
     tools.warning(f"Result directory {str(path_results)}: unable to read training data ({err})")
     data_study = None
   # Load evaluation data
   path_eval = path_results / "eval"
   try:
     data_eval = pandas.read_csv(path_eval, sep="\t", index_col=0)
     data_eval.index.name="Step number"
   except Exception as err:
     tools.warning(f"Result directory {str(path_results)}: unable to read evaluation data ({err})")
     data_eval = None
   # Merge data frames (if both are here)
   if data_study is not None and data_eval is not None:
     data = data_study.join(data_eval, how="outer")
   else:
     data = data_study or data_eval
   # Finalization
   self.name   = path_results.name
   self.path   = path_results
   self.config = data_config
   self.json   = data_json
   self.data   = data
   self.thresh = None
コード例 #12
0
ファイル: cluster.py プロジェクト: zhangyy91/AggregaThor
 def extract_field(text, name, conv):
     lim = "/" + name + ":"
     pos = text.find(lim)
     if pos < 0:
         raise tools.UserException("Missing field " + repr(name) +
                                   " in device name " +
                                   repr(device.name))
     text = text[pos + len(lim):]
     pos = text.find("/")
     if pos < 0:
         return conv(text), ""
     else:
         return conv(text[:pos]), text[pos:]
コード例 #13
0
def pnm(fd, tn):
    """ Save a 2D/3D tensor as a PGM/PBM stream.
  Args:
    fd File descriptor opened for writing binary streams
    tn A 2D/3D tensor to convert and save
  Notes:
    The input tensor is "intelligently" squeezed before processing
    For 2D tensor, assuming black is 1. and white is 0. (clamp between [0, 1])
    For 3D tensor, the first dimension must be the 3 color channels RGB (all between [0, 1])
  """
    shape = tuple(tn.shape)
    # Intelligent squeezing
    while len(tn.shape) > 3 and tn.shape[0] == 1:
        tn = tn[0]
    # Colored image generation
    if len(tn.shape) == 3:
        if tn.shape[0] == 1:
            tn = tn[0]
            # And continue on gray-scale
        elif tn.shape[0] != 3:
            raise tools.UserException(
                "Expected 3 color channels for the first dimension of a 3D tensor, got %d channels"
                % tn.shape[0])
        else:
            fd.write(("P6\n%d %d 255\n" % tn.shape[1:]).encode())
            fd.write(
                bytes(
                    tn.transpose(0, 2).transpose(0, 1).mul(256).clamp_(
                        0., 255.).byte().storage()))
            return
    # Gray-scale image generation
    if len(tn.shape) == 2:
        fd.write(("P5\n%d %d 255\n" % tn.shape).encode())
        fd.write(bytes((1.0 - tn).mul_(256).clamp_(0., 255.).byte().storage()))
        return
    # Invalid tensor shape
    raise tools.UserException(
        "Expected a 2D or 3D tensor, got %d dimensions %r" %
        (len(shape), tuple(shape)))
コード例 #14
0
 def checked(f_real, **kwargs):
     # Check parameter validity
     message = check(f_real=f_real, **kwargs)
     if message is not None:
         raise tools.UserException(
             f"Attack {name!r} cannot be used with the given parameters: {message}"
         )
     # Attack
     res = unchecked(f_real=f_real, **kwargs)
     # Forward asserted return value
     assert isinstance(res, list) and len(
         res
     ) == f_real, f"Expected attack {name!r} to return a list of {f_real} Byzantine gradients, got {res!r}"
     return res
コード例 #15
0
 def save(self, filepath, overwrite=False):
   """ Save the current checkpoint in the given file.
   Args:
     filepath  Given file path
     overwrite Allow to overwrite if the file already exists
   Returns:
     self
   """
   # Check if file already exists
   if pathlib.Path(filepath).exists() and not overwrite:
     raise tools.UserException(f"Unable to save checkpoint in existing file {str(filepath)!r} (overwriting has not been allowed by the caller)")
   # (Over)write the file
   torch.save(self._store, filepath)
   # Enable chaining
   return self
コード例 #16
0
ファイル: tf.py プロジェクト: zhangyy91/AggregaThor
 def restore(self, sess, path=None):
   """ Restore a saved session state.
   Args:
     sess Session to restore upon
     path Path to the storage file to restore (optional, use latest one if None)
   """
   # Update view
   self._update()
   # Default parameter
   if path is None:
     if not self.can_restore():
       raise tools.UserException("No storage file to restore")
     path = self.__available[-1]
   # Session restore
   self._saver().restore(sess, path)
コード例 #17
0
 def checked(f_real, **kwargs):
     # Check parameter validity
     message = check(f_real=f_real, **kwargs)
     if message is not None:
         raise tools.UserException(
             "Attack %r cannot be used with the given parameters: %s" %
             (name, message))
     # Attack
     res = unchecked(f_real=f_real, **kwargs)
     # Forward asserted return value
     assert isinstance(res, list) and len(
         res
     ) == f_real, "Expected attack %r to return a list of %f Byzantine gradients, got %r" % (
         name, f_real, res)
     return res
コード例 #18
0
 def __init__(self, args):
   # Parse key:val arguments
   args = tools.parse_keyval(args, defaults={"batch-size": 32})
   if args["batch-size"] <= 0:
     raise tools.UserException("Cannot make batches of non-positive size")
   # Report loading
   with tools.Context("mnist", None):
     print("Loading MNIST dataset...")
     raw_data = tf.keras.datasets.mnist.load_data()
   # Finalization
   self.__args     = args
   self.__raw_data = raw_data
   self.__datasets = None
   self.__cntr_wk  = 0 # Worker instantiation counter
   self.__cntr_ev  = 0 # Evaluator instantiation counter
コード例 #19
0
 def instantiate(self, name, *args, **kwargs):
   """ Instantiate a registered class.
   Args:
     name Class name
     ...  Forwarded parameters
   Returns:
     Registered class instance
   """
   # Assertions
   if name not in self.__register:
     cause = "Unknown name " + repr(name) + ", "
     if len(self.__register) == 0:
       cause += "no registered " + self.__denoms[0]
     else:
       cause += "available " + self.__denoms[1] + ": '" + ("', '").join(self.__register.keys()) + "'"
     raise tools.UserException(cause)
   # Instantiation
   return self.__register[name](*args, **kwargs)
コード例 #20
0
 def restore(self, instance, nothrow=False):
   """ Restore the snapshot for a given instance, warn if restoring a reference.
   Args:
     instance Instance to restore
     nothrow  Do not raise exception if no snapshot available for the instance
   Returns:
     self
   """
   instance, key = type(self)._prepare(instance)
   # Restore the state dictionary
   if key in self._store:
     instance.load_state_dict(self._store[key])
     # Check if restoring a reference
     if __debug__ and not self._copied[key]:
       tools.warning(f"Restoring a state dictionary reference in an instance of {tools.fullqual(type(instance))}; the resulting behavior may not be the one expected")
   elif not nothrow:
     raise tools.UserException(f"No snapshot for {key!r} is available in the checkpoint")
   # Enable chaining
   return self
コード例 #21
0
 def load(self, filepath, overwrite=False):
   """ Load/overwrite the storage from the given file.
   Args:
     filepath  Given file path
     overwrite Allow to overwrite any stored snapshot
   Returns:
     self
   """
   # Check if empty
   if not overwrite and len(self._store) > 0:
     raise tools.UserException("Unable to load into a non-empty checkpoint")
   # Load the file
   self._store = torch.load(filepath)
   # Reset the 'copied' flags accordingly
   if __debug__:
     self._copied.clear()
     for key in self._store.keys():
       self._copied[key] = True
   # Enable chaining
   return self
コード例 #22
0
 def _prepare(self, instance):
   """ Prepare the given instance for checkpointing.
   Args:
     instance Instance to snapshot/restore
   Returns:
     Checkpoint-able instance, key for the associated storage
   """
   # Recover instance's class
   cls = type(instance)
   # Transfer if available
   if cls in self._transfers:
     res = self._transfers[cls](instance)
   else:
     res = instance
   # Assert the instance is checkpoint-able
   for prop in ("state_dict", "load_state_dict"):
     if not callable(getattr(res, prop, None)):
       raise tools.UserException(f"Given instance {instance!r} is not checkpoint-able (missing callable member {prop!r})")
   # Return the instance and the associated storage key
   return res, tools.fullqual(cls)
コード例 #23
0
def average_nan(inputs):
    """ Compute the average coordinate by coordinate, ignoring NaN coordinate.
  Args:
    inputs Input gradients
  Returns:
    Average coordinate by coordinate, ignoring NaN
  """
    # Function selection
    funcs = {4: module.average_nan_float, 8: module.average_nan_double}
    fsize = inputs.dtype.itemsize
    if fsize not in funcs:
        raise tools.UserException("Unsupported floating point type")
    # Actual call
    dim = ctypes.c_size_t(inputs.shape[1])
    n = ctypes.c_size_t(inputs.shape[0])
    ins = ctypes.c_void_p(inputs.ctypes.data)
    out = np.empty_like(inputs[0])
    funcs[fsize](dim, n, ins, ctypes.c_void_p(out.ctypes.data))
    # Return computed gradient
    return out
コード例 #24
0
 def __init__(self, name_build, config=Configuration(), *args, **kwargs):
   """ Model builder constructor.
   Args:
     name_build Model name or constructor function
     config     Configuration to use for the parameter tensors
     ...        Additional (keyword-)arguments forwarded to the constructor
   Notes:
     If possible, data parallelism is enabled automatically
   """
   # Recover name/constructor
   if callable(name_build):
     name  = tools.fullqual(name_build)
     build = name_build
   else:
     models = type(self)._get_models()
     name  = str(name_build)
     build = models.get(name, None)
     if build is None:
       raise tools.UnavailableException(models, name, what="model name")
   # Build model
   with torch.no_grad():
     model = build(*args, **kwargs)
     if not isinstance(model, torch.nn.Module):
       raise tools.UserException("Expected built model %r to be an instance of 'torch.nn.Module', found %r instead" % (name, getattr(type(model), "__name__", "<unknown>")))
     model = model.to(**config)
     device = config["device"]
     if device.type == "cuda" and device.index is None: # Model is on GPU and not explicitly restricted to one particular card => enable data parallelism
       model = torch.nn.DataParallel(model)
   params = tools.flatten(model.parameters()) # NOTE: Ordering across runs/nodes seems to be ensured (i.e. only dependent on the model constructor)
   # Finalization
   self._model    = model
   self._name     = name
   self._config   = config
   self._params   = params
   self._gradient = None
   self._defaults = {
     "trainset":  None,
     "testset":   None,
     "loss":      None,
     "criterion": None,
     "optimizer": None }
コード例 #25
0
 def __init__(self, args):
     # Parse key:val arguments
     nbcores = len(os.sched_getaffinity(0))
     if nbcores == 0:
         nbcores = 4  # Arbitrary fallback
     args = tools.parse_keyval(args,
                               defaults={
                                   "batch-size": 32,
                                   "eval-batch-size": 1024,
                                   "nb-fetcher-threads": nbcores,
                                   "nb-batcher-threads": nbcores
                               })
     if args["batch-size"] <= 0:
         raise tools.UserException(
             "Cannot make batches of non-positive size")
     # Finalization
     self.__args = args
     self.__preproc = args[
         "preprocessing"] if "preprocessing" in args else "cifarnet"
     self.__cntr_wk = 0  # Worker instantiation counter
     self.__cntr_ev = 0  # Evaluator instantiation counter
コード例 #26
0
def squared_distance(a, b):
    """ Compute the squared l2 distance.
  Args:
    a Selected gradients
    b Coordinates to average
  Returns:
    (a - b)²
  """
    # Function selection
    funcs = {
        4: module.squared_distance_float,
        8: module.squared_distance_double
    }
    fsize = a.dtype.itemsize
    if fsize not in funcs:
        raise tools.UserException("Unsupported floating point type")
    # Actual call
    dim = ctypes.c_size_t(a.shape[0])
    a = ctypes.c_void_p(a.ctypes.data)
    b = ctypes.c_void_p(b.ctypes.data)
    res = funcs[fsize](dim, a, b)
    # Return computed scalar
    return res
コード例 #27
0
ファイル: cluster.py プロジェクト: zhangyy91/AggregaThor
def _g5k_parser():
    """ Generate the cluster specification from the G5k-specific cluster specification file.
  Returns:
    Cluster dictionary, with only 1 ps and n-1 worker(s), all using port 7000
  """
    global _g5k_env_key
    global _g5k_cluster
    if _g5k_cluster is not None:
        return _g5k_cluster
    if _g5k_env_key not in os.environ:
        raise tools.UserException(
            "Key " + repr(_g5k_env_key) +
            " not found in environment; are you running on Grid5000?")
    multi = pathlib.Path(os.environ[_g5k_env_key]).read_text().strip().split(
        os.linesep)
    seens = set()
    nodes = []
    for node in multi:
        if node in seens:
            continue
        nodes.append(node + ":7000")
        seens.add(node)
    _g5k_cluster = {"ps": nodes[0:1], "workers": nodes[1:]}
    return _g5k_cluster
コード例 #28
0
def bulyan(inputs, f, s):
    """ Compute Bulyan of Multi-Krum.
  Args:
    inputs Input gradients
    f      Number of byzantine gradients
    s      Number of selected gradients
  Returns:
    Bulyan's output gradient
  """
    # Function selection
    funcs = {4: module.bulyan_float, 8: module.bulyan_double}
    fsize = inputs.dtype.itemsize
    if fsize not in funcs:
        raise tools.UserException("Unsupported floating point type")
    # Actual call
    d = ctypes.c_size_t(inputs.shape[1])
    n = ctypes.c_size_t(inputs.shape[0])
    ins = ctypes.c_void_p(inputs.ctypes.data)
    sel = np.empty((s, inputs.shape[1]), dtype=inputs.dtype)
    out = np.empty(inputs.shape[1], dtype=inputs.dtype)
    funcs[fsize](d, n, f, s, ins, ctypes.c_void_p(sel.ctypes.data),
                 ctypes.c_void_p(out.ctypes.data))
    # Return computed gradient
    return out
コード例 #29
0
                            tf.reduce_mean(
                                tf.cast(tf.nn.in_top_k(logits, labels, 1),
                                        tf.float32)))
        return {
            "top1-X-acc":
            tf.add_n(accuracies, name="sum_top1Xacc") / float(len(accuracies))
        }


# ---------------------------------------------------------------------------- #
# Experiment registering

# (Try to) import slim package
with tools.ExpandPath(pathlib.Path(__file__).parent / "slim"):
    from . import slim
    from .slim.datasets import dataset_factory
    from .slim.preprocessing import preprocessing_factory

# Check whether CIFAR-10 dataset is available
dspath = pathlib.Path(__file__).parent / "datasets" / dataset_name
if not dspath.is_dir():
    raise tools.UserException("slim dataset " + repr(dataset_name) +
                              " in 'datasets' must be a directory")
if not tools.can_access(dspath, read=True):
    raise tools.UserException("slim dataset " + repr(dataset_name + "/*") +
                              " in 'datasets' must be read-able")

# Register dataset directory and experiment
dataset_directory = str(dspath)
register("cnnet", CNNetExperiment)
コード例 #30
0

# ---------------------------------------------------------------------------- #
# Experiment registering

# (Try to) import slim package
with tools.ExpandPath(pathlib.Path(__file__).parent / "slim"):
    from . import slim
    from .slim.datasets import dataset_factory
    from .slim.preprocessing import preprocessing_factory
    from .slim.nets.nets_factory import networks_map

# List available models
models = list(networks_map.keys())
if len(models) == 0:
    raise tools.UserException("no model available in slim package")

# List available datasets
datasets = dict()
dspath = pathlib.Path(__file__).parent / "datasets"
if not dspath.is_dir():
    raise tools.UserException("slim dataset at 'datasets' must be a directory")
for path in dspath.iterdir():
    if not tools.can_access(path, read=True):
        with tools.Context(None, "warning"):
            print("slim dataset " + repr(path.name + "/*") +
                  " in 'datasets' is not read-able and has been ignored")
        continue
    if not path.is_dir():  # Must be after to first check for access rights...
        continue
    datasets[path.name] = str(path)