コード例 #1
0
def create_discriminator(discrim_inputs, discrim_targets):
    n_layers = 3
    layers = []
    ndf = 64
    # 2x [batch, height, width, in_channels] => [batch, height, width, in_channels * 2]
    input = tf.concat([discrim_inputs, discrim_targets], axis=3)

    # layer_1: [batch, 256, 256, in_channels * 2] => [batch, 128, 128, ndf]
    with tf.variable_scope("layer_1"):
        convolved = tools.conv(input, ndf, stride=2)
        rectified = tools.lrelu(convolved, 0.2)
        layers.append(rectified)

    # layer_2: [batch, 128, 128, ndf] => [batch, 64, 64, ndf * 2]
    # layer_3: [batch, 64, 64, ndf * 2] => [batch, 32, 32, ndf * 4]
    # layer_4: [batch, 32, 32, ndf * 4] => [batch, 31, 31, ndf * 8]
    for i in range(n_layers):
        with tf.variable_scope("layer_%d" % (len(layers) + 1)):
            out_channels = ndf * min(2**(i + 1), 8)
            stride = 1 if i == n_layers - 1 else 2  # last layer here has stride 1
            convolved = tools.conv(layers[-1], out_channels, stride=stride)
            normalized = tools.batchnorm(convolved)
            rectified = tools.lrelu(normalized, 0.2)
            layers.append(rectified)

    # layer_5: [batch, 31, 31, ndf * 8] => [batch, 30, 30, 1]
    with tf.variable_scope("layer_%d" % (len(layers) + 1)):
        convolved = tools.conv(rectified, out_channels=1, stride=1)
        output = tf.sigmoid(convolved)
        layers.append(output)

    return layers[-1]
コード例 #2
0
def SVHN(x, n_classes):
    import tools
    '''
    Args:
        images: 4D tensor [batch_size, img_width, img_height, img_channel]
    Notes:
        In each conv layer, the kernel size is:
        [kernel_size, kernel_size, number of input channels, number of output channels].
        number of input channels are from previuous layer, if previous layer is THE input
        layer, number of input channels should be image's channels.


    '''
    x = tools.conv('conv1', x, 64)
    x = tools.pool('pool1', x)

    x = tools.conv('conv2', x, 64)
    x = tools.pool('pool2', x)

    x = tools.conv('conv3', x, 128)
    x = tools.pool('pool3', x)

    x = tools.FC_layer('fc4', x, out_nodes=64)
    x = tools.drop_out('drop_out', x, keep_prob=0.5)
    x = tools.final_layer('softmax', x, out_nodes=n_classes)
    return x
コード例 #3
0
ファイル: models.py プロジェクト: lhzhong/TFCode
    def lenet5(self):

        with tf.name_scope('LeNet5'):

            self.conv1 = tools.conv('conv1',
                                    self.input,
                                    32,
                                    kernel_size=[5, 5],
                                    stride=[1, 1, 1, 1],
                                    is_trainable=self.is_trainable)
            self.pool1 = tools.pool('pool1',
                                    self.conv1,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv2 = tools.conv('conv2',
                                    self.pool1,
                                    64,
                                    kernel_size=[5, 5],
                                    stride=[1, 1, 1, 1],
                                    is_trainable=self.is_trainable)
            self.pool2 = tools.pool('pool2',
                                    self.conv2,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.fc1 = tools.fc_layer('fc1', self.pool2, out_nodes=512)
            self.dropout1 = tools.dropout('dropout1', self.fc1, self.keep_prob)

            self.logits = tools.fc_layer('fc2',
                                         self.dropout1,
                                         use_relu=False,
                                         out_nodes=self.n_classes)
コード例 #4
0
def VGG16(x, isSty, is_pretrain=False):
    x = x - np.array([ 123.68 ,  116.779,  103.939])
    every_layer_output = {}
    
    x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    
    x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    every_layer_output['conv1_2'] = x #conv1_2
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    
    x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    every_layer_output['conv2_2'] = x #conv2_2
    
    if isSty:
        x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
        x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        
        x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        every_layer_output['conv3_3'] = x #conv3_3
    
        
        x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
        x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        
        x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        
        x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        every_layer_output['conv4_3'] = x #conv4_3

#    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
#
#    x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    
#    x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#    x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
#
#    x = tools.FC_layer('fc6', x, out_nodes=4096)
#    #x = tools.batch_norm(x)
#    x = tools.FC_layer('fc7', x, out_nodes=4096)
#    #x = tools.batch_norm(x)
#    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return every_layer_output
コード例 #5
0
def Network(x, n_classes, dropout):
    global is_training
    x = tf.reshape(x, [-1, 28, 28, 1])
    x = tools.conv('conv1', x, 32, kernel_size=[5, 5], is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, is_max_pool=True)
    x = tools.conv('conv2', x, 64, is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, is_max_pool=True)

    fc_x = tools.FC_layer('FC1', x, 1024)

    fc_x = tf.layers.dropout(fc_x, rate=dropout, training=is_training)

    out = tools.FC_layer('FC2', fc_x, n_classes)

    return out
コード例 #6
0
def Model_finetune(layer, n_classes, is_pretrain=True):
    # '''
    # Model_finetune: that uses varies tools.py function to setup CNN and returns the logits
    # Arg: layer(tensor), n_classes(int), is_pretrain(Booleen)
    # layer: list of images that are decoded in tensor
    # n_classes: batch size for the training
    # is_pretrain: number of classification for output
    # Return: layer(logits)
    # '''
    with tf.name_scope('Model_finetune'):
        # first conv + pool
        layer = tools.conv('conv1_1', layer, 64, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)   
        with tf.name_scope('pool1'):    
            layer = tools.pool('pool1', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        # second conv + pool
        layer = tools.conv('conv2_1', layer, 128, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)    
        with tf.name_scope('pool2'):    
            layer = tools.pool('pool2', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
                    
        # thrid conv + pool
        layer = tools.conv('conv3_1', layer, 256, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            layer = tools.pool('pool3', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
            
        # fourth conv + pool
        layer = tools.conv('conv4_1', layer, 512, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            layer = tools.pool('pool4', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
        # fifth conv + pool
        layer = tools.conv('conv5_1', layer, 512, kernel_size=[7,7], stride=[1,1,1,1], is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            layer = tools.pool('pool5', layer, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
        
        # 3 fully connected layers, last one is softmax
        layer = tools.FC_layer('fc6', layer, out_nodes=2048)        
        with tf.name_scope('batch_norm1'):
            layer = tools.batch_norm(layer)           
        layer = tools.FC_layer('fc7', layer, out_nodes=2048)        
        with tf.name_scope('batch_norm2'):
            layer = tools.batch_norm(layer)            
        layer = tools.FC_layer('fc8', layer, out_nodes=n_classes)
    
        return layer
コード例 #7
0
def build_renet(inputs,
                num_classes,
                use_bottleneck=False,
                num_residual_units=5,
                relu_leakiness=0.0):
    with tf.variable_scope('init'):
        x = inputs
        x = tools.conv('init_conv', x, 3, 3, 16, _stride_arr(1))

    strides = [1, 2, 2]
    activate_before_residual = [True, False, False]
    if use_bottleneck:
        res_func = tools.bottleneck_residual
        filters = [16, 64, 128, 256]
    else:
        res_func = tools.residual
        filters = [16, 16, 32, 64]

    # first group
    with tf.variable_scope('unit_1_0'):
        x = res_func(x, filters[0], filters[1], _stride_arr(strides[0]),
                     activate_before_residual[0])

    for i in six.moves.range(1, num_residual_units):
        with tf.variable_scope('unit_1_%d' % i):
            x = res_func(x, filters[1], filters[1], _stride_arr(1), False)

    # second group
    with tf.variable_scope('unit_2_0'):
        x = res_func(x, filters[1], filters[2], _stride_arr(strides[1]),
                     activate_before_residual[1])
    for i in six.moves.range(1, num_residual_units):
        with tf.variable_scope('unit_2_%d' % i):
            x = res_func(x, filters[2], filters[2], _stride_arr(1), False)

    # third group
    with tf.variable_scope('unit_3_0'):
        x = res_func(x, filters[2], filters[3], _stride_arr(strides[2]),
                     activate_before_residual[2])
    for i in six.moves.range(1, num_residual_units):
        with tf.variable_scope('unit_3_%d' % i):
            x = res_func(x, filters[3], filters[3], _stride_arr(1), False)

    # all pool layer
    with tf.variable_scope('unit_last'):
        x = tools.batch_norm('final_bn', x)
        x = tools.relu(x, relu_leakiness)
        x = tools.global_avg_pool(x)

    # fc_layer + softmax
    with tf.variable_scope('logit'):
        logits = tools.fully_connected(x, num_classes)
        predictions = tf.nn.softmax(logits)

    return logits, predictions
コード例 #8
0
def Network(x, n_classes, dropout, reuse, is_training):
    with tf.variable_scope('ConvNet', reuse=reuse):
        x = x['images']
        x = tf.reshape(x, [-1, 28, 28, 1])
        x = tools.conv('conv1',
                       x,
                       32,
                       kernel_size=[5, 5],
                       is_pretrain=is_pretrain)
        x = tools.pool('pool1', x, is_max_pool=True)
        x = tools.conv('conv2', x, 64, is_pretrain=is_pretrain)
        x = tools.pool('pool2', x, is_max_pool=True)

        fc_x = tools.FC_layer('FC1', x, 1024)

        fc_x = tf.layers.dropout(fc_x, rate=dropout, training=is_training)

        out = tools.FC_layer('FC2', fc_x, n_classes)

    return out
コード例 #9
0
    def LeNet5(self):

        with tf.name_scope('LeNet5'):

            self.conv1 = tools.conv('conv1',
                                    self.input,
                                    16,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool1 = tools.pool('pool1',
                                    self.conv1,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.conv2 = tools.conv('conv2',
                                    self.pool1,
                                    16,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool2 = tools.pool('pool2',
                                    self.conv2,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.fc1 = tools.FC_layer('local3', self.pool2, out_nodes=128)
            self.norm1 = tools.batch_norm('batch_norm1', self.fc1)

            self.fc2 = tools.FC_layer('local4', self.norm1, out_nodes=128)
            self.norm2 = tools.batch_norm('batch_norm2', self.fc2)

            self.fc3 = tools.FC_layer('softmax_linear',
                                      self.norm2,
                                      out_nodes=self.n_classes,
                                      use_relu=False)
コード例 #10
0
ファイル: models.py プロジェクト: lhzhong/TFCode
def AlexNet(x, n_classes, is_pretrain=True):

    with tf.name_scope('AlexNet'):

        x = tools.conv('conv1',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.pool('pool1',
                       x,
                       kernel=[1, 3, 3, 1],
                       stride=[1, 2, 2, 1],
                       is_max_pool=True,
                       is_norm=True)

        x = tools.conv('conv2',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.pool('pool2',
                       x,
                       kernel=[1, 3, 3, 1],
                       stride=[1, 2, 2, 1],
                       is_max_pool=True,
                       is_norm=True)

        x = tools.FC_layer('local3', x, out_nodes=128)
        x = tools.batch_norm('batch_norm1', x)

        x = tools.FC_layer('local4', x, out_nodes=128)
        x = tools.batch_norm('batch_norm2', x)

        x = tools.FC_layer('softmax_linear', x, out_nodes=n_classes)

        return x
コード例 #11
0
def mnist_net(x, prob):
    with tf.variable_scope('mnist_net'):

        x = tf.reshape(x, shape=[-1, 28, 28, 1])

        # first convolution layer
        x = tools.conv('conv_layer_1',
                       x,
                       32,
                       kernel_size=[5, 5],
                       stride=[1, 1, 1, 1])
        with tf.name_scope('max_pool_1'):
            x = tools.pool('max_pool_1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1])

        # second convolution layer
        x = tools.conv('conv_layer_2',
                       x,
                       64,
                       kernel_size=[5, 5],
                       stride=[1, 1, 1, 1])
        with tf.name_scope('max_pool_2'):
            x = tools.pool('max_pool_2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1])

        # fully convolution layers
        x = tools.FC_layer('fc_layer_1', x, 1024)
        x = tf.nn.relu(x)
        x = tools.drop(x, prob)
        x = tools.FC_layer('fc_layer_2', x, 10)

        return x
コード例 #12
0
ファイル: VGG.py プロジェクト: caibobit/tensorflowlearning
def VGG16(x, n_classes, is_pretrain=True):
    
    x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return x
コード例 #13
0
ファイル: VGG.py プロジェクト: Syneh/homework1
def VGG16N(x, n_classes, is_pretrain=True):

    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1',
                       x,
                       8,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv1_2',
                       x,
                       8,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv2_1',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv2_2',
                       x,
                       16,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv3_1',
                       x,
                       32,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_2',
                       x,
                       32,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_3',
                       x,
                       32,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv4_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_3',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv5_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_3',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=512)
        x = tf.nn.dropout(x, 0.5)
        #with tf.name_scope('batch_norm1'):
        #x = tools.batch_norm(x)
        x = tools.FC_layer('fc7', x, out_nodes=512)
        x = tf.nn.dropout(x, 0.5)
        #with tf.name_scope('batch_norm2'):
        #x = tools.batch_norm(x)
        x = tools.FC_layer('fc8', x, out_nodes=512)
        x = tf.nn.dropout(x, 0.5)

        x = tools.FC_layer('fc9', x, out_nodes=24)

        return x


#%%
コード例 #14
0
def create_generator(generator_inputs, generator_outputs_channels):
    '''
    [<tf.Tensor 'generator/encoder_1/conv/Conv2D:0' shape=(1, 16, 16, 64) dtype=float32>,
    <tf.Tensor 'generator/encoder_2/batchnorm/batchnorm/add_1:0' shape=(1, 8, 8, 128) dtype=float32>,
    <tf.Tensor 'generator/encoder_3/batchnorm/batchnorm/add_1:0' shape=(1, 4, 4, 256) dtype=float32>,
    <tf.Tensor 'generator/encoder_4/batchnorm/batchnorm/add_1:0' shape=(1, 2, 2, 512) dtype=float32>,
    <tf.Tensor 'generator/encoder_5/batchnorm/batchnorm/add_1:0' shape=(1, 1, 1, 512) dtype=float32>,
    <tf.Tensor 'generator/decoder_5/dropout/mul:0' shape=(1, 2, 2, 512) dtype=float32>,
    <tf.Tensor 'generator/decoder_4/batchnorm/batchnorm/add_1:0' shape=(1, 4, 4, 512) dtype=float32>,
    <tf.Tensor 'generator/decoder_3/batchnorm/batchnorm/add_1:0' shape=(1, 8, 8, 256) dtype=float32>,
    <tf.Tensor 'generator/decoder_2/batchnorm/batchnorm/add_1:0' shape=(1, 16, 16, 64) dtype=float32>,
    <tf.Tensor 'generator/decoder_1/Tanh:0' shape=(1, 32, 32, 1) dtype=float32>]
    '''
    layers = []
    ngf = 64
    # encoder_1: [batch, 32, 256, in_channels] => [batch, 16, 128, ngf]
    with tf.variable_scope("encoder_1"):
        output = tools.conv(generator_inputs, ngf, stride=2)
        layers.append(output)

    layer_specs = [
        ngf * 2,  # encoder_2: [batch, 16, 128, ngf] => [batch, 8, 64, ngf * 2]
        ngf *
        4,  # encoder_3: [batch, 8, 64, ngf * 2] => [batch, 4, 32, ngf * 4]
        ngf *
        8,  # encoder_4: [batch, 4, 32, ngf * 4] => [batch, 2, 16, ngf * 8]
        ngf *
        8,  # encoder_5: [batch, 2, 16, ngf * 8] => [batch, 1, 8, ngf * 8]
    ]

    for out_channels in layer_specs:
        with tf.variable_scope("encoder_%d" % (len(layers) + 1)):
            rectified = tools.lrelu(layers[-1], 0.2)
            # [batch, in_height, in_width, in_channels] => [batch, in_height/2, in_width/2, out_channels]
            convolved = tools.conv(rectified, out_channels, stride=2)
            output = tools.batchnorm(convolved)
            layers.append(output)

    layer_specs = [
        (ngf * 8,
         0.5),  # decoder_5: [batch, 1, 1, ngf * 8] => [batch, 2, 2, ngf * 8 ]
        (ngf * 8,
         0.0),  # decoder_4: [batch, 2, 2, ngf * 8 ] => [batch, 4, 4, ngf * 8 ]
        (ngf * 4,
         0.0),  # decoder_3: [batch, 4, 4, ngf * 8] => [batch, 8, 8, ngf * 4 ]
        (ngf,
         0.0),  # decoder_2: [batch, 8, 8, ngf * 4 ] => [batch, 16, 16, ngf ]
    ]

    num_encoder_layers = len(layers)
    for decoder_layer, (out_channels, dropout) in enumerate(layer_specs):
        skip_layer = num_encoder_layers - decoder_layer - 1
        with tf.variable_scope("decoder_%d" % (skip_layer + 1)):
            if decoder_layer == 0:
                # first decoder layer doesn't have skip connections
                # since it is directly connected to the skip_layer
                input = layers[-1]
            else:
                input = tf.concat([layers[-1], layers[skip_layer]], axis=3)

            rectified = tf.nn.relu(input)
            # [batch, in_height, in_width, in_channels] => [batch, in_height*2, in_width*2, out_channels]
            output = tools.deconv(rectified, out_channels)
            output = tools.batchnorm(output)

            if dropout > 0.0:
                output = tf.nn.dropout(output, keep_prob=1 - dropout)

            layers.append(output)

    # decoder_1: [batch, 128, 128, ngf * 2] => [batch, 256, 256, generator_outputs_channels]
    with tf.variable_scope("decoder_1"):
        input = tf.concat([layers[-1], layers[0]], axis=3)
        rectified = tf.nn.relu(input)
        output = tools.deconv(rectified, generator_outputs_channels)
        output = tf.tanh(output)
        layers.append(output)

    return layers[-1]
コード例 #15
0
ファイル: mynet_newin.py プロジェクト: MintcakeDotCom/CV
def DehazeNet(x):

    with tf.variable_scope('DehazeNet'):
        x_s = x
        # x = tools.conv('DN_conv1_1', x_s, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])
        # x = tools.conv('DN_conv1_2', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])

        # with tf.name_scope('pool1'):
        #     x = tools.pool('pool1', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)
        #
        # with tf.name_scope('pool2'):
        #     x = tools.pool('pool2', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('upsampling_1',
                       x_s,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 2, 2, 1])
        x = tools.conv('upsampling_2',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 2, 2, 1])

        x1 = tools.conv('DN_conv2_1',
                        x,
                        64,
                        kernel_size=[3, 3],
                        stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv2_2',
                       x1,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv_nonacti('DN_conv2_3',
                               x,
                               64,
                               kernel_size=[3, 3],
                               stride=[1, 1, 1, 1])
        x = tf.add(x, x1)
        # x = tools.batch_norm(x)
        x = tools.acti_layer(x)

        # x = tools.conv('DN_conv2_4', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])

        x2 = tools.conv('DN_conv3_1',
                        x,
                        64,
                        kernel_size=[3, 3],
                        stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv3_2',
                       x2,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv_nonacti('DN_conv3_3',
                               x,
                               64,
                               kernel_size=[3, 3],
                               stride=[1, 1, 1, 1])
        x = tf.add(x, x2)
        # x = tools.batch_norm(x)
        x = tools.acti_layer(x)

        # x = tools.conv('DN_conv3_4', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])

        x3 = tools.conv('DN_conv4_1',
                        x,
                        64,
                        kernel_size=[3, 3],
                        stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv4_2',
                       x3,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv4_3',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv4_4',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv_nonacti('DN_conv4_5',
                               x,
                               64,
                               kernel_size=[3, 3],
                               stride=[1, 1, 1, 1])
        x = tf.add(x, x3)
        # x = tools.batch_norm(x)
        x = tools.acti_layer(x)

        # x = tools.conv('DN_conv4_5', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])

        x4 = tools.conv('DN_conv5_1',
                        x,
                        64,
                        kernel_size=[3, 3],
                        stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv5_2',
                       x4,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv5_3',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv('DN_conv5_4',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1])
        x = tools.conv_nonacti('DN_conv5_5',
                               x,
                               64,
                               kernel_size=[3, 3],
                               stride=[1, 1, 1, 1])
        x = tf.add(x, x4)
        # x = tools.batch_norm(x)
        x = tools.acti_layer(x)

        # x5 = tools.conv('DN_conv5_6', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])
        # x = tools.conv('DN_conv5_7', x5, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])
        # x = tools.conv_nonacti('DN_conv5_8', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])
        # x = tf.add(x, x5)
        # x = tools.acti_layer(x)

        x = tools.deconv('DN_deconv1',
                         x,
                         64,
                         output_shape=[35, 112, 112, 64],
                         kernel_size=[3, 3],
                         stride=[1, 2, 2, 1])
        x = tools.deconv('DN_deconv2',
                         x,
                         64,
                         output_shape=[35, 224, 224, 64],
                         kernel_size=[3, 3],
                         stride=[1, 2, 2, 1])

        # x = tools.conv('DN_conv6_1', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])
        # x = tools.conv('DN_conv6_1', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1])
        # x = tf.add(x, x_s)
        # # # x = tools.batch_norm(x)
        # x = tools.acti_layer(x)

        x_r = tools.conv_nonacti('DN_conv7_1',
                                 x,
                                 3,
                                 kernel_size=[3, 3],
                                 stride=[1, 1, 1, 1])
        x_r = tf.add(x_r, x_s)
        x_r = tools.acti_layer(x_r)
        return x_r
コード例 #16
0
def VGG16_DP(x, n_classes, is_pretrain=True, flag=0):
    with tf.name_scope('VGG16'):
        x = tools.conv('conv1_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv1_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv2_1',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv2_2',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv3_1',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_2',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_3',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv4_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv5_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=4096)
        with tf.name_scope('dropout1'):
            if flag == 0:
                dropout1 = tf.nn.dropout(x, 0.5)
            else:
                dropout1 = tf.nn.dropout(x, 1)
        x = tf.nn.relu(dropout1)
        x = tools.FC_layer('fc7', x, out_nodes=4096)
        with tf.name_scope('dropout2'):
            if flag == 0:
                dropout2 = tf.nn.dropout(x, 0.5)
            else:
                dropout2 = tf.nn.dropout(x, 1)
        x = tf.nn.relu(dropout2)
        x = tools.last_FC('fc8', x, out_nodes=n_classes)
        return x
コード例 #17
0
ファイル: a.py プロジェクト: suncht/sun-python
is_pretrain = False
learning_rate = 0.5
MAX_STEP = 5000
train_log_dir = './/logs//train//'
val_log_dir = './/logs//val//'

with tf.Graph().as_default():
    with tf.name_scope('inputs'):
        x = tf.placeholder(tf.float32, shape=[None, 784])
        y_ = tf.placeholder(tf.float32, shape=[None, 10])
        x_images = tf.reshape(x, [-1, 28, 28, 1])

    with tf.name_scope('conv_net'):
        outputs = tools.conv('conv1_1',
                             x_images,
                             32,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        #outputs = tools.conv('conv1_2', outputs, 32, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        outputs = tools.pool('pool1',
                             outputs,
                             kernel=[1, 2, 2, 1],
                             stride=[1, 2, 2, 1],
                             is_max_pool=True)

        outputs = tools.conv('conv2_1',
                             outputs,
                             64,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
コード例 #18
0
def Myvgg(x, n_class, is_pretrain=True):

    with tf.name_scope('Myvgg'):

        x = tools.conv('conv1_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv1_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           ksize=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv2_1',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv2_2',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           ksize=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv3_1',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_2',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        # x = tools.conv('conv3_3', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           ksize=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=2048)
        with tf.name_scope('batch_norma1'):
            x = tools.batch_norm(
                x)  # batch norm can avoid overfit, more efficient than dropout
        x = tools.FC_layer('fc7', x, out_nodes=2048)
        #x = tools.dropout(x,0.5)
        with tf.name_scope('batch_norm2'):
            x = tools.batch_norm(x)
        x = tools.FC_layer('fc8', x, out_nodes=n_class)

    return x
コード例 #19
0
ファイル: VGG.py プロジェクト: tonyli0803/DeVISE
def VGG16(x, n_classes, is_pretrain=True):
    
    x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
    
    x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)

    x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    #x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    #x = tools.batch_norm(x)
    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return x
コード例 #20
0
def MyResNet(x, n_class, is_pretrain=True):

    with tf.name_scope('MyResNet'):

        x1 = tools.conv('conv1_1',
                        x,
                        64,
                        kernel_size=[3, 3],
                        stride=[1, 1, 1, 1],
                        is_pretrain=is_pretrain)
        x2 = tools.conv_no_relu('conv1_2',
                                x,
                                64,
                                kernel_size=[3, 3],
                                stride=[1, 1, 1, 1],
                                is_pretrain=is_pretrain)
        x3 = tf.add(x1, x2)
        x = tf.nn.relu(x3, name='relu')

        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           ksize=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x1 = tools.conv('conv2_1',
                        x,
                        128,
                        kernel_size=[3, 3],
                        stride=[1, 1, 1, 1],
                        is_pretrain=is_pretrain)
        x2 = tools.conv_no_relu('conv2_2',
                                x,
                                128,
                                kernel_size=[3, 3],
                                stride=[1, 1, 1, 1],
                                is_pretrain=is_pretrain)
        x3 = tf.add(x1, x2)
        x = tf.nn.relu(x3, name='relu')
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           ksize=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x1 = tools.conv('conv3_1',
                        x,
                        256,
                        kernel_size=[1, 1],
                        stride=[1, 1, 1, 1],
                        is_pretrain=is_pretrain)
        x2 = tools.conv_no_relu('conv3_2',
                                x,
                                256,
                                kernel_size=[1, 1],
                                stride=[1, 1, 1, 1],
                                is_pretrain=is_pretrain)
        x3 = tf.add(x1, x2)
        x = tf.nn.relu(x3, name='relu')
        # x = tools.conv('conv3_3', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           ksize=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=512)
        with tf.name_scope('batch_norma1'):
            x = tools.batch_norm(
                x)  # batch norm can avoid overfit, more efficient than dropout
        x = tools.FC_layer('fc7', x, out_nodes=512)
        #x = tools.dropout(x,0.5)
        with tf.name_scope('batch_norm2'):
            x = tools.batch_norm(x)
        x = tools.FC_layer('fc8', x, out_nodes=n_class)

    return x
コード例 #21
0
ファイル: model1.py プロジェクト: ZhangYH0502/TS-SSL
def vgg16(x, CLASS_NUM, _dropout, is_training):
    with tf.variable_scope('layer1_1'):
        conv1_1 = tools.conv2d(x, [3, 3], 64, 1, is_training, True, True, True)
    with tf.variable_scope('layer1_2'):
        conv1_2 = tools.conv2d(conv1_1, [3, 3], 64, 1, is_training, True, True,
                               True)
    with tf.variable_scope('pool1'):
        pool1 = tf.nn.max_pool(conv1_2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding="SAME")

    with tf.variable_scope('layer2_1'):
        conv2_1 = tools.conv2d(pool1, [3, 3], 128, 1, is_training, True, True,
                               True)
    with tf.variable_scope('layer2_2'):
        conv2_2 = tools.conv2d(conv2_1, [3, 3], 128, 1, is_training, True,
                               True, True)
    with tf.variable_scope('pool2'):
        pool2 = tf.nn.max_pool(conv2_2,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding="SAME")

    with tf.variable_scope('layer3_1'):
        conv3_1 = tools.conv2d(pool2, [3, 3], 256, 1, is_training, True, True,
                               True)
    with tf.variable_scope('layer3_2'):
        conv3_2 = tools.conv2d(conv3_1, [3, 3], 256, 1, is_training, True,
                               True, True)
    with tf.variable_scope('layer3_3'):
        conv3_3 = tools.conv2d(conv3_2, [3, 3], 256, 1, is_training, True,
                               True, True)
    with tf.variable_scope('pool3'):
        pool3 = tf.nn.max_pool(conv3_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding="SAME")

    with tf.variable_scope('layer4_1'):
        conv4_1 = tools.conv2d(pool3, [3, 3], 512, 1, is_training, True, True,
                               True)
    with tf.variable_scope('layer4_2'):
        conv4_2 = tools.conv2d(conv4_1, [3, 3], 512, 1, is_training, True,
                               True, True)
    with tf.variable_scope('layer4_3'):
        conv4_3 = tools.conv2d(conv4_2, [3, 3], 512, 1, is_training, True,
                               True, True)
    with tf.variable_scope('pool4'):
        pool4 = tf.nn.max_pool(conv4_3,
                               ksize=[1, 2, 2, 1],
                               strides=[1, 2, 2, 1],
                               padding="SAME")

    with tf.variable_scope('layer5_1'):
        conv5_1 = tools.conv2d(pool4, [3, 3], 512, 1, is_training, True, False,
                               True)
    with tf.variable_scope('layer5_2'):
        conv5_2 = tools.conv2d(conv5_1, [3, 3], 512, 1, is_training, True,
                               False, True)
    with tf.variable_scope('layer5_3'):
        conv5_3 = tools.conv2d(conv5_2, [3, 3], 512, 1, is_training, True,
                               False, True)

    fmp_3 = conv(conv3_3,
                 kernel_size=[1, 1],
                 out_channels=256,
                 stride=[1, 1, 1, 1],
                 is_pretrain=_training,
                 bias=False,
                 bn=False,
                 layer_name='conv_3')
    fmp_3 = tf.image.resize_bilinear(fmp_3, [56, 56])
    fmp_4 = conv(conv4_3,
                 kernel_size=[1, 1],
                 out_channels=256,
                 stride=[1, 1, 1, 1],
                 is_pretrain=_training,
                 bias=False,
                 bn=False,
                 layer_name='conv_4')
    fmp_4 = tf.image.resize_bilinear(fmp_4, [56, 56])
    fmp_5 = conv(conv5_3,
                 kernel_size=[1, 1],
                 out_channels=256,
                 stride=[1, 1, 1, 1],
                 is_pretrain=_training,
                 bias=False,
                 bn=False,
                 layer_name='conv_5')
    fmp_5 = tf.image.resize_bilinear(fmp_5, [56, 56])
    fmp = tf.concat([fmp_3, fmp_4, fmp_5], -1)
    with tf.variable_scope('dilation'):
        fmp_dil_1 = dil_conv(fmp,
                             kernel_size=[3, 3],
                             out_channels=256,
                             rate=1,
                             is_pretrain=_training,
                             bias=False,
                             bn=False,
                             layer_name='dilation1')
        fmp_dil_2 = dil_conv(fmp,
                             kernel_size=[3, 3],
                             out_channels=256,
                             rate=2,
                             is_pretrain=_training,
                             bias=False,
                             bn=False,
                             layer_name='dilation2')
        fmp_dil_3 = dil_conv(fmp,
                             kernel_size=[3, 3],
                             out_channels=256,
                             rate=4,
                             is_pretrain=_training,
                             bias=False,
                             bn=False,
                             layer_name='dilation3')
        fmp_dil_4 = dil_conv(fmp,
                             kernel_size=[3, 3],
                             out_channels=256,
                             rate=8,
                             is_pretrain=_training,
                             bias=False,
                             bn=False,
                             layer_name='dilation4')
        fmp_dilation = tf.concat([fmp_dil_1, fmp_dil_2, fmp_dil_3, fmp_dil_4],
                                 -1)
        fmp = tools.conv(fmp_dilation,
                         kernel_size=[1, 1],
                         out_channels=512,
                         stride=[1, 1, 1, 1],
                         is_pretrain=_training,
                         bias=False,
                         bn=False,
                         layer_name='conv_dilation')

    gap = tf.reduce_mean(fmp, [1, 2])

    with tf.variable_scope('CAM_fc'):
        cam_w = tf.get_variable(
            'CAM_W',
            shape=[512, CLASS_NUM],
            initializer=tf.contrib.layers.xavier_initializer(0.0))

    output = tf.matmul(gap, cam_w)

    annotation_pred = tf.argmax(output, axis=-1)

    fmp = tf.image.resize_bilinear(fmp, [224, 224])

    return annotation_pred, output, fmp
コード例 #22
0
def VGG19(x, n_classes, is_pretrain=True):

    x = tools.conv('conv1_1',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv1_2',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool1', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv2_1',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv2_2',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool2', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv3_1',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_2',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_3',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_4',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv4_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_4',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool4', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.conv('conv5_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_4',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool5', x, kernel=[1, 2, 2, 1], stride=[1, 2, 2, 1])

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    x = tf.nn.dropout(x, keep_prob=0.5)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    x = tf.nn.dropout(x, keep_prob=0.5)
    x = tools.FC_layer('fc8', x, out_nodes=n_classes)

    return x
コード例 #23
0
def VGG16PlanInferencet(x, keep_prob, n_classes=12, is_pretrain=True):
    x = tools.conv('conv1_1',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv1_2',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool1',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv2_1',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv2_2',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool2',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv3_1',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_2',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv3_3',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv4_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv4_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv5_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.conv('conv5_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=is_pretrain)
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.FC_layer('fc6', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096)
    x = tools.batch_norm(x)
    x_drop = tf.nn.dropout(x, keep_prob)
    x = tools.FC_layer('fc8', x_drop, out_nodes=n_classes)

    return x
コード例 #24
0
def VGG16N(x, n_classes, IS_PRETRAIN):
    import tools

    x = tools.conv('conv1_1',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[0])
    x = tools.conv('conv1_2',
                   x,
                   64,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[1])
    x = tools.pool('pool1',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv2_1',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[2])
    x = tools.conv('conv2_2',
                   x,
                   128,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[3])
    x = tools.pool('pool2',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv3_1',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[4])
    x = tools.conv('conv3_2',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[5])
    x = tools.conv('conv3_3',
                   x,
                   256,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[6])
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv4_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[7])
    x = tools.conv('conv4_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[8])
    x = tools.conv('conv4_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[9])
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.conv('conv5_1',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[10])
    x = tools.conv('conv5_2',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[11])
    x = tools.conv('conv5_3',
                   x,
                   512,
                   kernel_size=[3, 3],
                   stride=[1, 1, 1, 1],
                   is_pretrain=IS_PRETRAIN[12])
    x = tools.pool('pool3',
                   x,
                   kernel=[1, 2, 2, 1],
                   stride=[1, 2, 2, 1],
                   is_max_pool=True)

    x = tools.FC_layer('fc6', x, out_nodes=4096, is_pretrain=IS_PRETRAIN[13])
    x = tools.batch_norm(x)
    x = tools.FC_layer('fc7', x, out_nodes=4096, is_pretrain=IS_PRETRAIN[14])
    x = tools.batch_norm(x)
    x = tools.final_layer('fc8', x, out_nodes=n_classes)
    return x
コード例 #25
0
def VGG16N(x, n_classes, is_pretrain=True):

    with tf.name_scope('VGG16'):

        conv1_1 = tools.conv('conv1_1',
                             x,
                             64,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv1_2 = tools.conv('conv1_2',
                             conv1_1,
                             64,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            pool1 = tools.pool('pool1',
                               conv1_2,
                               kernel=[1, 2, 2, 1],
                               stride=[1, 2, 2, 1],
                               is_max_pool=True)

        conv2_1 = tools.conv('conv2_1',
                             pool1,
                             128,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv2_2 = tools.conv('conv2_2',
                             conv2_1,
                             128,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            pool2 = tools.pool('pool2',
                               conv2_2,
                               kernel=[1, 2, 2, 1],
                               stride=[1, 2, 2, 1],
                               is_max_pool=True)

        conv3_1 = tools.conv('conv3_1',
                             pool2,
                             256,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv3_2 = tools.conv('conv3_2',
                             conv3_1,
                             256,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv3_3 = tools.conv('conv3_3',
                             conv3_2,
                             256,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            pool3 = tools.pool('pool3',
                               conv3_3,
                               kernel=[1, 2, 2, 1],
                               stride=[1, 2, 2, 1],
                               is_max_pool=True)

        conv4_1 = tools.conv('conv4_1',
                             pool3,
                             512,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv4_2 = tools.conv('conv4_2',
                             conv4_1,
                             512,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv4_3 = tools.conv('conv4_3',
                             conv4_2,
                             512,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            pool4 = tools.pool('pool4',
                               conv4_3,
                               kernel=[1, 2, 2, 1],
                               stride=[1, 2, 2, 1],
                               is_max_pool=True)

        conv5_1 = tools.conv('conv5_1',
                             pool4,
                             512,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv5_2 = tools.conv('conv5_2',
                             conv5_1,
                             512,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        conv5_3 = tools.conv('conv5_3',
                             conv5_2,
                             512,
                             kernel_size=[3, 3],
                             stride=[1, 1, 1, 1],
                             is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            pool5 = tools.pool('pool5',
                               conv5_3,
                               kernel=[1, 2, 2, 1],
                               stride=[1, 2, 2, 1],
                               is_max_pool=True)

        fc6 = tools.FC_layer('fc6', pool5, out_nodes=4096)
        with tf.name_scope('batch_norm1'):
            batch_norm1 = tools.batch_norm(fc6)
        fc7 = tools.FC_layer('fc7', batch_norm1, out_nodes=4096)
        with tf.name_scope('batch_norm2'):
            batch_norm2 = tools.batch_norm(fc7)
        fc8 = tools.FC_layer('fc8', batch_norm2, out_nodes=n_classes)

        return fc8
コード例 #26
0
def VGG16N(x, n_classes, is_pretrain=True):

    with tf.name_scope('VGG16'):  #目的:不想显示的节点做成一个大的节点,美化tensorbroad图像

        x = tools.conv('conv1_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv1_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv2_1',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv2_2',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv3_1',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_2',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_3',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv4_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv5_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=4096)
        #with tf.name_scope('batch_norm1'):
        #x = tools.batch_norm(x)
        x = tools.FC_layer('fc7', x, out_nodes=4096)
        #with tf.name_scope('batch_norm2'):
        #x = tools.batch_norm(x)
        x = tools.FC_layer('fc8', x, out_nodes=n_classes)

        return x
コード例 #27
0
def VGG16(x, n_class, is_pretrain=True):

    # using the name scope, the tensorboard maybe look better
    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv1_2', x, 64, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv2_1', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv2_2', x, 128, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv3_1', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3, 3], stride=[1, 1, 1, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv4_1', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.conv('conv5_1', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3, 3], stride=[1, 2, 2, 1], is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5', x, ksize=[1, 2, 2, 1], stride=[1, 2, 2, 1], is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=4096)
        with tf.name_scope('batch_norma1'):
            x = tools.batch_norm(x)     # batch norm can avoid overfit, more efficient than dropout
        x = tools.FC_layer('fc7', x, out_nodes=4096)
        with tf.name_scope('batch_norm2'):
            x = tools.batch_norm(x)
        x = tools.FC_layer('fc8', x, out_nodes=n_class)

        return x
コード例 #28
0
ファイル: VGG.py プロジェクト: MingChaoXu/GalaxyVisualization
def VGG16N(x, n_classes, keep_prob,is_pretrain=True):
    
    with tf.name_scope('VGG16'):

        x = tools.conv('conv1_1', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)   
        x = tools.conv('conv1_2', x, 64, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm1'):
#            x = tools.batch_norm(x)
        with tf.name_scope('pool1'):    
            x = tools.pool('pool1', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
           
        
        x = tools.conv('conv2_1', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)    
        x = tools.conv('conv2_2', x, 128, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm2'):
#            x = tools.batch_norm(x) 
        with tf.name_scope('pool2'):    
            x = tools.pool('pool2', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
         
             

        x = tools.conv('conv3_1', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_2', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv3_3', x, 256, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm3'):
#            x = tools.batch_norm(x) 
        with tf.name_scope('pool3'):
            x = tools.pool('pool3', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
             

        x = tools.conv('conv4_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv4_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm4'):
#            x = tools.batch_norm(x) 
        with tf.name_scope('pool4'):
            x = tools.pool('pool4', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)
        
         

        x = tools.conv('conv5_1', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_2', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
        x = tools.conv('conv5_3', x, 512, kernel_size=[3,3], stride=[1,1,1,1], is_pretrain=is_pretrain)
#        with tf.name_scope('batch_norm5'):
#            x = tools.batch_norm(x)  
        with tf.name_scope('pool5'):
            x = tools.pool('pool5', x, kernel=[1,2,2,1], stride=[1,2,2,1], is_max_pool=True)            
        
       
        
        x = tools.FC_layer('fc6', x, out_nodes=4096) 
        
#        with tf.name_scope('batch_norm6'):
#            x = tools.batch_norm(x) 
        #dropouut    
        x=tf.nn.dropout(x, keep_prob)  
        
        x = tools.FC_layer('fc7', x, out_nodes=4096)  
        
#        with tf.name_scope('batch_norm7'):
#            x = tools.batch_norm(x)
        #dropout    
        x=tf.nn.dropout(x, keep_prob) 
        
        fc_output=x            
        x = tools.softmax_layer('fc8', x, out_nodes=n_classes)
    
        return x,fc_output



#%%







            
コード例 #29
0
def VGG16_BN(x, n_classes, is_pretrain=True, is_training=True):
    with tf.name_scope('VGG16'):
        x = tools.conv('conv1_1',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv1_2',
                       x,
                       64,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool1'):
            x = tools.pool('pool1',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv2_1',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv2_2',
                       x,
                       128,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool2'):
            x = tools.pool('pool2',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv3_1',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_2',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv3_3',
                       x,
                       256,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool3'):
            x = tools.pool('pool3',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv4_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv4_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool4'):
            x = tools.pool('pool4',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.conv('conv5_1',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_2',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        x = tools.conv('conv5_3',
                       x,
                       512,
                       kernel_size=[3, 3],
                       stride=[1, 1, 1, 1],
                       is_pretrain=is_pretrain)
        with tf.name_scope('pool5'):
            x = tools.pool('pool5',
                           x,
                           kernel=[1, 2, 2, 1],
                           stride=[1, 2, 2, 1],
                           is_max_pool=True)

        x = tools.FC_layer('fc6', x, out_nodes=4096)
        with tf.name_scope('batch_norm1'):
            x = tools.batch_norm_wrapper(
                x, is_training=is_training)  # 训练时为True,测试为False
        x = tools.FC_layer('fc7', x, out_nodes=4096)
        with tf.name_scope('batch_norm2'):
            x = tools.batch_norm_wrapper(x, is_training=is_training)
        x = tools.last_FC('fc8', x, out_nodes=n_classes)

        return x
コード例 #30
0
ファイル: models.py プロジェクト: lhzhong/TFCode
    def VGG16(self):

        with tf.name_scope('VGG16'):

            self.conv1_1 = tools.conv('conv1_1',
                                      self.input,
                                      64,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv1_2 = tools.conv('conv1_2',
                                      self.conv1_1,
                                      64,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool1 = tools.pool('pool1',
                                    self.conv1_2,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv2_1 = tools.conv('conv2_1',
                                      self.pool1,
                                      128,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv2_2 = tools.conv('conv2_2',
                                      self.conv2_1,
                                      128,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool2 = tools.pool('pool2',
                                    self.conv2_2,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv3_1 = tools.conv('conv3_1',
                                      self.pool2,
                                      256,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv3_2 = tools.conv('conv3_2',
                                      self.conv3_1,
                                      256,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv3_3 = tools.conv('conv3_3',
                                      self.conv3_2,
                                      256,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool3 = tools.pool('pool3',
                                    self.conv3_3,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv4_1 = tools.conv('conv4_1',
                                      self.pool3,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv4_2 = tools.conv('conv4_2',
                                      self.conv4_1,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv4_3 = tools.conv('conv4_3',
                                      self.conv4_2,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool4 = tools.pool('pool4',
                                    self.conv4_3,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.conv5_1 = tools.conv('conv5_1',
                                      self.pool4,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv5_2 = tools.conv('conv5_2',
                                      self.conv5_1,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.conv5_3 = tools.conv('conv5_3',
                                      self.conv5_2,
                                      512,
                                      kernel_size=[3, 3],
                                      stride=[1, 1, 1, 1],
                                      is_pretrain=self.is_pretrain)
            self.pool5 = tools.pool('pool5',
                                    self.conv5_3,
                                    kernel=[1, 2, 2, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True)

            self.fc6 = tools.FC_layer('fc6', self.pool5, out_nodes=4096)
            self.batch_norm1 = tools.batch_norm('batch_norm1', self.fc6)

            self.fc7 = tools.FC_layer('fc7', self.batch_norm1, out_nodes=4096)
            self.batch_norm2 = tools.batch_norm('batch_norm2', self.fc7)

            self.fc8 = tools.FC_layer('fc8',
                                      self.batch_norm2,
                                      out_nodes=self.n_classes)
コード例 #31
0
    def AlexNet(self):

        with tf.name_scope('AlexNet'):

            self.conv1 = tools.conv('conv1',
                                    self.input,
                                    96,
                                    kernel_size=[11, 11],
                                    stride=[1, 4, 4, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool1 = tools.pool('pool1',
                                    self.conv1,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.conv2 = tools.conv('conv2',
                                    self.pool1,
                                    256,
                                    kernel_size=[5, 5],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool2 = tools.pool('pool2',
                                    self.conv2,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.conv3 = tools.conv('conv3',
                                    self.pool2,
                                    384,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.conv4 = tools.conv('conv4',
                                    self.conv3,
                                    384,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.conv5 = tools.conv('conv5',
                                    self.conv4,
                                    256,
                                    kernel_size=[3, 3],
                                    stride=[1, 1, 1, 1],
                                    is_pretrain=self.is_pretrain)
            self.pool5 = tools.pool('pool5',
                                    self.conv5,
                                    kernel=[1, 3, 3, 1],
                                    stride=[1, 2, 2, 1],
                                    is_max_pool=True,
                                    is_norm=True)

            self.fc1 = tools.FC_layer('fc6', self.pool5, out_nodes=4096)
            self.norm1 = tools.batch_norm('batch_norm1', self.fc1)

            self.fc2 = tools.FC_layer('fc7', self.norm1, out_nodes=4096)
            self.norm2 = tools.batch_norm('batch_norm2', self.fc2)

            self.fc3 = tools.FC_layer('softmax_linear',
                                      self.norm2,
                                      out_nodes=self.n_classes,
                                      use_relu=False)