コード例 #1
0
ファイル: cnn.py プロジェクト: mecthew/AutoDL2019
    def preprocess_data(self, x, val_x=None, feature_length=None):
        x = pad_seq(x, pad_len=feature_length)

        if val_x is not None:
            val_x = pad_seq(val_x, pad_len=feature_length)
            return x, val_x

        return x
コード例 #2
0
ファイル: speech_features.py プロジェクト: mecthew/AutoDL2019
def get_features_data(x, feature_func, model_kind,
                      split_length=None, feature_length=None):
    if model_kind == 0:
        x = [sample[:split_length] for sample in x]
        x = feature_func(x)
        x_feas = []
        for i in range(len(x)):
            fea = np.mean(x[i], axis=0).reshape(-1)
            fea_std = np.std(x[i], axis=0).reshape(-1)
            x_feas.append(np.concatenate([fea, fea_std], axis=-1))
        x_feas = np.asarray(x_feas, dtype=np.float32)
        scaler = StandardScaler()
        x = scaler.fit_transform(x_feas[:, :])
    elif model_kind == 1:
        x = [sample[:split_length] for sample in x]
        x = feature_func(x)
        x = pad_seq(x, pad_len=feature_length)

    return x
コード例 #3
0
    def _get_preprocess_data(self, sample_index, model_kind, pre_func):
        need_pre = set([i for i in sample_index if i not in self._pre_x])
        raw_data = [self._all_x[i] for i in need_pre]
        if model_kind == 0 or model_kind == 1:
            raw_data = [
                sample[:self._raw_data_split_length] for sample in raw_data
            ]
        pre_data = pre_func(raw_data)
        if model_kind == 0 or model_kind == 1:
            if self._feature_length is None:
                self._feature_length = get_max_length(pre_data)
                self._feature_length = min(MAX_FRAME_NUM, self._feature_length)
                # pre_data = pad_seq(pre_data, pad_len=self._feature_length)
        log("Total {}, update {}".format(len(sample_index), len(need_pre)))

        if len(need_pre) > 0:
            if model_kind == 0:
                x_feas = []
                for i in range(len(pre_data)):
                    fea = np.mean(pre_data[i], axis=0).reshape(-1)
                    fea_std = np.std(pre_data[i], axis=0).reshape(-1)
                    x_feas.append(np.concatenate([fea, fea_std], axis=-1))
                x_feas = np.asarray(x_feas)
                scaler = StandardScaler()
                pre_data = scaler.fit_transform(x_feas[:, :])
            elif model_kind == 1:
                pre_data = pad_seq(pre_data, pad_len=self._feature_length)

            cnt = 0
            for i in need_pre:
                self._pre_x[i] = pre_data[cnt]
                cnt += 1

        x = [self._pre_x[i] for i in sample_index]
        y = [self._all_y[i] for i in sample_index]

        return x, y